我在pyspark 2.2上有如下计算的相关矩阵:
from pyspark.ml.linalg import Vectors
from pyspark.ml.stat import Correlation
from pyspark.ml.linalg import Vectors
from pyspark.ml.feature import VectorAssembler
datos = sql("""select * from proceso_riesgos.jdgc_bd_train_mn_ingresos""")
Variables_corr= ['ingreso_final_mix','ingreso_final_promedio',
'ingreso_final_mediana','ingreso_final_trimedia','ingresos_serv_q1',
'ingresos_serv_q2','ingresos_serv_q3','prom_ingresos_serv','y_correc']
assembler = VectorAssembler(
inputCols=Variables_corr,
outputCol="features")
datos1=datos.select(Variables_corr).filter("y_correc is not null")
output = assembler.transform(datos)
r1 = Correlation.corr(output, "features")
结果是一个数据帧,该数据帧带有一个名为“ pearson(features):matrix”的变量:
Row(pearson(features)=DenseMatrix(20, 20, [1.0, 0.9428, 0.8908, 0.913,
0.567, 0.5832, 0.6148, 0.6488, ..., -0.589, -0.6145, -0.5906, -0.5534,
-0.5346, -0.0797, -0.617, 1.0], False))]
我需要获取这些值并将其导出到Excel,或者能够操纵结果。 列表可能会很理想。
感谢帮助!
答案 0 :(得分:14)
请尝试使用此代码。用我的read()
通话替换您的dato。请注意,在映射lambda函数之前,我已将SQL df转换为RDD。
from pyspark.mllib.stat import Statistics
import pandas as pd
# df = sqlCtx.read.format('com.databricks.spark.csv').option('header', 'true').option('inferschema', 'true').load('corr_test.csv')
df = datos
col_names = df.columns
features = df.rdd.map(lambda row: row[0:])
corr_mat=Statistics.corr(features, method="pearson")
corr_df = pd.DataFrame(corr_mat)
corr_df.index, corr_df.columns = col_names, col_names
示例输出:
print(corr_df.to_string())
p1m p2m p3m p6m p9m p1m_ya p2m_ya p3m_ya p6m_ya p9m_ya p3m_q_ty 1ya_sales 2ya_sales seasonal_sales
p1m 1.000000 0.755679 0.755452 0.506780 0.557281 0.299348 0.182835 -0.001173 0.332484 0.308060 0.354096 0.029385 0.871112 0.292136
p2m 0.755679 1.000000 0.987618 0.896422 0.863010 0.103545 0.431919 0.318233 0.660824 0.588278 0.533427 0.082632 0.766487 0.521879
p3m 0.755452 0.987618 1.000000 0.866792 0.822750 0.056984 0.386290 0.274494 0.606200 0.523938 0.464158 0.020544 0.749018 0.451629
p6m 0.506780 0.896422 0.866792 1.000000 0.979228 0.210658 0.690670 0.623754 0.851390 0.790276 0.738892 0.362444 0.502335 0.754078
p9m 0.557281 0.863010 0.822750 0.979228 1.000000 0.388865 0.779092 0.695114 0.912167 0.872120 0.843273 0.499578 0.548269 0.849284
p1m_ya 0.299348 0.103545 0.056984 0.210658 0.388865 1.000000 0.614836 0.547236 0.564361 0.682653 0.771472 0.874493 0.313053 0.735593
p2m_ya 0.182835 0.431919 0.386290 0.690670 0.779092 0.614836 1.000000 0.976696 0.943147 0.933545 0.887659 0.775088 0.315853 0.899157
p3m_ya -0.001173 0.318233 0.274494 0.623754 0.695114 0.547236 0.976696 1.000000 0.894490 0.891665 0.824135 0.778251 0.162183 0.848247
p6m_ya 0.332484 0.660824 0.606200 0.851390 0.912167 0.564361 0.943147 0.894490 1.000000 0.982057 0.928130 0.692184 0.466502 0.940549
p9m_ya 0.308060 0.588278 0.523938 0.790276 0.872120 0.682653 0.933545 0.891665 0.982057 1.000000 0.970826 0.800886 0.431627 0.977719
p3m_q_ty 0.354096 0.533427 0.464158 0.738892 0.843273 0.771472 0.887659 0.824135 0.928130 0.970826 1.000000 0.864894 0.402324 0.995414
1ya_sales 0.029385 0.082632 0.020544 0.362444 0.499578 0.874493 0.775088 0.778251 0.692184 0.800886 0.864894 1.000000 0.065062 0.858691
2ya_sales 0.871112 0.766487 0.749018 0.502335 0.548269 0.313053 0.315853 0.162183 0.466502 0.431627 0.402324 0.065062 1.000000 0.343994
seasonal_sales 0.292136 0.521879 0.451629 0.754078 0.849284 0.735593 0.899157 0.848247 0.940549 0.977719 0.995414 0.858691 0.343994 1.000000
答案 1 :(得分:7)
您快到了!无需使用旧的rdd mllib api。
这是我生成熊猫数据框的方法,可以导出为excel或csv或其他格式。
def correlation_matrix(df, corr_columns, method='pearson'):
vector_col = "corr_features"
assembler = VectorAssembler(inputCols=corr_columns, outputCol=vector_col)
df_vector = assembler.transform(df).select(vector_col)
matrix = Correlation.corr(df_vector, vector_col, method)
result = matrix.collect()[0]["pearson({})".format(vector_col)].values
return pd.DataFrame(result.reshape(-1, len(corr_columns)), columns=corr_columns, index=corr_columns)