如何获得相关矩阵值pyspark

时间:2018-08-13 23:34:07

标签: python apache-spark pyspark

我在pyspark 2.2上有如下计算的相关矩阵:

from pyspark.ml.linalg import Vectors
from pyspark.ml.stat import Correlation
from pyspark.ml.linalg import Vectors
from pyspark.ml.feature import VectorAssembler

datos = sql("""select * from proceso_riesgos.jdgc_bd_train_mn_ingresos""")

Variables_corr= ['ingreso_final_mix','ingreso_final_promedio',
'ingreso_final_mediana','ingreso_final_trimedia','ingresos_serv_q1',
'ingresos_serv_q2','ingresos_serv_q3','prom_ingresos_serv','y_correc']

assembler = VectorAssembler(
inputCols=Variables_corr,
outputCol="features")

datos1=datos.select(Variables_corr).filter("y_correc is not null")
output = assembler.transform(datos)
r1 = Correlation.corr(output, "features")

结果是一个数据帧,该数据帧带有一个名为“ pearson(features):matrix”的变量:

Row(pearson(features)=DenseMatrix(20, 20, [1.0, 0.9428, 0.8908, 0.913, 
0.567, 0.5832, 0.6148, 0.6488, ..., -0.589, -0.6145, -0.5906, -0.5534, 
-0.5346, -0.0797, -0.617, 1.0], False))]

我需要获取这些值并将其导出到Excel,或者能够操纵结果。 列表可能会很理想。

感谢帮助!

2 个答案:

答案 0 :(得分:14)

请尝试使用此代码。用我的read()通话替换您的dato。请注意,在映射lambda函数之前,我已将SQL df转换为RDD。

from pyspark.mllib.stat import Statistics
import pandas as pd

# df = sqlCtx.read.format('com.databricks.spark.csv').option('header', 'true').option('inferschema', 'true').load('corr_test.csv')
df = datos
col_names = df.columns
features = df.rdd.map(lambda row: row[0:])
corr_mat=Statistics.corr(features, method="pearson")
corr_df = pd.DataFrame(corr_mat)
corr_df.index, corr_df.columns = col_names, col_names

示例输出:

print(corr_df.to_string())
                     p1m       p2m       p3m       p6m       p9m    p1m_ya    p2m_ya    p3m_ya    p6m_ya    p9m_ya  p3m_q_ty  1ya_sales  2ya_sales  seasonal_sales
p1m             1.000000  0.755679  0.755452  0.506780  0.557281  0.299348  0.182835 -0.001173  0.332484  0.308060  0.354096   0.029385   0.871112        0.292136
p2m             0.755679  1.000000  0.987618  0.896422  0.863010  0.103545  0.431919  0.318233  0.660824  0.588278  0.533427   0.082632   0.766487        0.521879
p3m             0.755452  0.987618  1.000000  0.866792  0.822750  0.056984  0.386290  0.274494  0.606200  0.523938  0.464158   0.020544   0.749018        0.451629
p6m             0.506780  0.896422  0.866792  1.000000  0.979228  0.210658  0.690670  0.623754  0.851390  0.790276  0.738892   0.362444   0.502335        0.754078
p9m             0.557281  0.863010  0.822750  0.979228  1.000000  0.388865  0.779092  0.695114  0.912167  0.872120  0.843273   0.499578   0.548269        0.849284
p1m_ya          0.299348  0.103545  0.056984  0.210658  0.388865  1.000000  0.614836  0.547236  0.564361  0.682653  0.771472   0.874493   0.313053        0.735593
p2m_ya          0.182835  0.431919  0.386290  0.690670  0.779092  0.614836  1.000000  0.976696  0.943147  0.933545  0.887659   0.775088   0.315853        0.899157
p3m_ya         -0.001173  0.318233  0.274494  0.623754  0.695114  0.547236  0.976696  1.000000  0.894490  0.891665  0.824135   0.778251   0.162183        0.848247
p6m_ya          0.332484  0.660824  0.606200  0.851390  0.912167  0.564361  0.943147  0.894490  1.000000  0.982057  0.928130   0.692184   0.466502        0.940549
p9m_ya          0.308060  0.588278  0.523938  0.790276  0.872120  0.682653  0.933545  0.891665  0.982057  1.000000  0.970826   0.800886   0.431627        0.977719
p3m_q_ty        0.354096  0.533427  0.464158  0.738892  0.843273  0.771472  0.887659  0.824135  0.928130  0.970826  1.000000   0.864894   0.402324        0.995414
1ya_sales       0.029385  0.082632  0.020544  0.362444  0.499578  0.874493  0.775088  0.778251  0.692184  0.800886  0.864894   1.000000   0.065062        0.858691
2ya_sales       0.871112  0.766487  0.749018  0.502335  0.548269  0.313053  0.315853  0.162183  0.466502  0.431627  0.402324   0.065062   1.000000        0.343994
seasonal_sales  0.292136  0.521879  0.451629  0.754078  0.849284  0.735593  0.899157  0.848247  0.940549  0.977719  0.995414   0.858691   0.343994        1.000000

答案 1 :(得分:7)

您快到了!无需使用旧的rdd mllib api。

这是我生成熊猫数据框的方法,可以导出为ex​​cel或csv或其他格式。

def correlation_matrix(df, corr_columns, method='pearson'):
    vector_col = "corr_features"
    assembler = VectorAssembler(inputCols=corr_columns, outputCol=vector_col)
    df_vector = assembler.transform(df).select(vector_col)
    matrix = Correlation.corr(df_vector, vector_col, method)

    result = matrix.collect()[0]["pearson({})".format(vector_col)].values
    return pd.DataFrame(result.reshape(-1, len(corr_columns)), columns=corr_columns, index=corr_columns)