假设我有一个如下所示的相关矩阵:
df = pd.DataFrame(data={'a':[1,0.2,0.3,0.4],'b':[0.2,1,0.5,0.6],'c':[0.3,0.5,1,0.7],'d':[0.4,0.6,0.7,1]}, index=['a','b','c','d'])
提取每种成对组合(a-b,a-c等)的唯一值的最佳方法是什么?
df2 =
a_b a_c a_d b_c b_d c_d
0.2 0.3 0.4 0.5 0.6 0.7
我看到的唯一方法是编写自己的函数,但想知道是否有人知道此操作的快捷方式
答案 0 :(得分:8)
IIUC:
df_out = df.stack()
df_out.index = df_out.index.map('_'.join)
df_out = df_out.to_frame().T
输出:
a_a a_b a_c a_d b_a b_b b_c b_d c_a c_b c_c c_d d_a d_b d_c
0 1.0 0.2 0.3 0.4 0.2 1.0 0.5 0.6 0.3 0.5 1.0 0.7 0.4 0.6 0.7
而且,如果您想摆脱a_a,b_b等。
df_out = df.stack()
df_out = df_out[df_out.index.get_level_values(0) != df_out.index.get_level_values(1)]
df_out.index = df_out.index.map('_'.join)
df_out = df_out.to_frame().T
输出
a_b a_c a_d b_a b_c b_d c_a c_b c_d d_a d_b d_c
0 0.2 0.3 0.4 0.2 0.5 0.6 0.3 0.5 0.7 0.4 0.6 0.7
或者摆脱b_a并保留a_b:
df_out = df.stack()
df_out = df_out[df_out.index.get_level_values(0) < df_out.index.get_level_values(1)]
df_out.index = df_out.index.map('_'.join)
df_out = df_out.to_frame().T
或在.loc
中使用lambda函数合并几行:
df_out = df.stack().loc[lambda x: x.index.get_level_values(0) < x.index.get_level_values(1)]
df_out.index = df_out.index.map('_'.join)
df_out = df_out.to_frame().T
输出:
a_b a_c a_d b_c b_d c_d
0 0.2 0.3 0.4 0.5 0.6 0.7
答案 1 :(得分:3)
IIUC,您可以使用索引
df2 = df.unstack().reset_index()
s = df2[['level_0', 'level_1']].agg(frozenset,1).drop_duplicates()
df2 = df2.loc[s.index]
ind = df2.agg(lambda k: (k['level_0']+'_'+k['level_1']), axis=1)
df2.set_index(ind)[0].to_frame().T
a_a a_b a_c a_d b_b b_c b_d c_c c_d d_d
0 1.0 0.2 0.3 0.4 1.0 0.5 0.6 1.0 0.7 1.0
答案 2 :(得分:0)
您可以有效地使用矩阵:
import numpy as np
df = pd.DataFrame(data={'a':[1,0.2,0.3,0.4],'b':[0.2,1,0.5,0.6],'c':[0.3,0.5,1,0.7],'d':[0.4,0.6,0.7,1]}, index=['a','b','c','d'])
unique_values=[s for s in np.tril(df, k=-1).flatten() if s!=0]
print(unique_values)
它给你:[0.2, 0.3, 0.5, 0.4, 0.6, 0.7]
关键是 np.tril 函数。