负回归系数,但预测值图中的正斜率

时间:2018-08-13 02:16:02

标签: r ggplot2 predict

我一直在绘制预测值,这些预测值会改变我的焦点独立变量。但是,我注意到我的焦点变量(x)的系数为负,但预测曲线显示为正斜率。下面是一个足够小而不会产生问题的示例。我对示例数据表示歉意,我能得到的最小值是N = 250,同时减少了原始模型中的协变量。有四个变量:y,x,ctry(用于国家/地区固定效果)和year(用于时间固定效果)。我使用一个简单的OLS模型。

df <- structure(list(ctry = structure(c(45L, 25L, 117L, 41L, 111L, 
                                        106L, 113L, 73L, 137L, 18L, 97L, 145L, 89L, 91L, 131L, 51L, 70L, 
                                        123L, 28L, 129L, 26L, 41L, 34L, 17L, 18L, 6L, 135L, 104L, 36L, 
                                        50L, 120L, 107L, 128L, 132L, 44L, 148L, 81L, 39L, 37L, 16L, 133L, 
                                        136L, 15L, 127L, 114L, 30L, 108L, 77L, 75L, 109L, 116L, 103L, 
                                        143L, 36L, 143L, 78L, 124L, 43L, 81L, 107L, 126L, 54L, 127L, 
                                        130L, 101L, 66L, 100L, 23L, 40L, 75L, 11L, 85L, 67L, 31L, 57L, 
                                        55L, 57L, 67L, 95L, 63L, 52L, 140L, 46L, 94L, 69L, 147L, 40L, 
                                        129L, 60L, 7L, 98L, 97L, 125L, 144L, 110L, 100L, 128L, 20L, 53L, 
                                        27L, 38L, 44L, 112L, 12L, 5L, 107L, 48L, 3L, 72L, 53L, 33L, 48L, 
                                        138L, 58L, 7L, 56L, 39L, 102L, 130L, 35L, 29L, 121L, 80L, 113L, 
                                        119L, 143L, 1L, 8L, 64L, 124L, 141L, 63L, 27L, 28L, 143L, 22L, 
                                        82L, 147L, 62L, 146L, 12L, 24L, 71L, 84L, 118L, 136L, 10L, 22L, 
                                        61L, 102L, 88L, 66L, 47L, 136L, 86L, 27L, 2L, 113L, 141L, 137L, 
                                        80L, 108L, 65L, 49L, 90L, 4L, 59L, 93L, 54L, 32L, 2L, 141L, 11L, 
                                        11L, 84L, 78L, 16L, 102L, 42L, 77L, 63L, 24L, 122L, 101L, 13L, 
                                        1L, 9L, 59L, 60L, 104L, 105L, 87L, 20L, 116L, 115L, 130L, 17L, 
                                        107L, 39L, 95L, 76L, 131L, 134L, 55L, 52L, 129L, 82L, 99L, 41L, 
                                        61L, 56L, 145L, 40L, 92L, 43L, 107L, 13L, 14L, 21L, 29L, 74L, 
                                        96L, 115L, 83L, 73L, 19L, 118L, 140L, 142L, 68L, 50L, 32L, 72L, 
                                        55L, 91L, 126L, 70L, 1L, 79L, 2L, 139L, 125L, 49L, 132L, 26L, 
                                        44L, 54L, 65L, 14L, 15L), .Label = c("ADO", "AFG", "AGO", "ALB", 
                                                                             "ARE", "ARG", "ARM", "ATG", "AZE", "BDI", "BEL", "BEN", "BFA", 
                                                                             "BGD", "BGR", "BHS", "BIH", "BLR", "BLZ", "BRA", "BRB", "BRN", 
                                                                             "BWA", "CAF", "CHL", "CHN", "CIV", "CMR", "COG", "COL", "COM", 
                                                                             "CPV", "CRI", "CUB", "CYP", "CZE", "DJI", "DMA", "DOM", "DZA", 
                                                                             "ECU", "EST", "ETH", "FJI", "FSM", "GAB", "GEO", "GHA", "GIN", 
                                                                             "GMB", "GNQ", "GRD", "GTM", "GUY", "HKG", "HND", "HRV", "HTI", 
                                                                             "HUN", "IND", "IRN", "ISL", "ISR", "JAM", "JPN", "KAZ", "KHM", 
                                                                             "KIR", "KNA", "KOR", "KWT", "LAO", "LBN", "LBY", "LCA", "LIE", 
                                                                             "LKA", "LSO", "LVA", "MAC", "MAR", "MCO", "MDA", "MDG", "MDV", 
                                                                             "MEX", "MHL", "MKD", "MLI", "MMR", "MUS", "MYS", "NER", "NGA", 
                                                                             "NIC", "NPL", "NRU", "PAK", "PAN", "PER", "PLW", "PNG", "POL", 
                                                                             "PRY", "QAT", "ROM", "RUS", "RWA", "SAU", "SDN", "SEN", "SGP", 
                                                                             "SLB", "SLE", "SLV", "SMR", "SOM", "SRB", "STP", "SVK", "SVN", 
                                                                             "SWZ", "SYC", "TCD", "TGO", "THA", "TJK", "TKM", "TMP", "TON", 
                                                                             "TTO", "TUN", "TUR", "TUV", "TWN", "TZA", "UGA", "URY", "UZB", 
                                                                             "VCT", "VEN", "VNM", "WBG", "WSM", "YEM", "ZAF", "ZMB", "ZWE"
                                        ), class = "factor"), year = c(2005L, 2005L, 2000L, 2000L, 2010L, 
                                                                       2000L, 2000L, 2005L, 2010L, 2010L, 2010L, 2010L, 2005L, 2000L, 
                                                                       2005L, 2000L, 2000L, 2000L, 2010L, 2005L, 2010L, 2005L, 2000L, 
                                                                       2005L, 2000L, 2010L, 2010L, 2010L, 2010L, 2010L, 2000L, 2000L, 
                                                                       2010L, 2000L, 2010L, 2000L, 2000L, 2000L, 2000L, 2005L, 2005L, 
                                                                       2005L, 2010L, 2005L, 2000L, 2000L, 2005L, 2000L, 2005L, 2000L, 
                                                                       2010L, 2010L, 2005L, 2005L, 2005L, 2000L, 2005L, 2010L, 2005L, 
                                                                       2005L, 2010L, 2005L, 2010L, 2000L, 2000L, 2010L, 2010L, 2000L, 
                                                                       2000L, 2000L, 2010L, 2010L, 2000L, 2005L, 2000L, 2005L, 2010L, 
                                                                       2010L, 2000L, 2010L, 2005L, 2000L, 2005L, 2005L, 2010L, 2010L, 
                                                                       2010L, 2010L, 2005L, 2010L, 2000L, 2005L, 2010L, 2000L, 2000L, 
                                                                       2005L, 2005L, 2010L, 2000L, 2005L, 2010L, 2000L, 2005L, 2000L, 
                                                                       2010L, 2005L, 2000L, 2005L, 2000L, 2005L, 2000L, 2005L, 2000L, 
                                                                       2000L, 2005L, 2010L, 2005L, 2005L, 2010L, 2010L, 2000L, 2010L, 
                                                                       2005L, 2005L, 2000L, 2010L, 2005L, 2005L, 2000L, 2010L, 2005L, 
                                                                       2005L, 2010L, 2005L, 2010L, 2000L, 2010L, 2005L, 2005L, 2000L, 
                                                                       2005L, 2010L, 2000L, 2010L, 2000L, 2010L, 2000L, 2010L, 2010L, 
                                                                       2010L, 2005L, 2000L, 2010L, 2000L, 2005L, 2000L, 2010L, 2010L, 
                                                                       2010L, 2005L, 2000L, 2000L, 2000L, 2010L, 2000L, 2010L, 2010L, 
                                                                       2010L, 2010L, 2010L, 2005L, 2000L, 2000L, 2005L, 2005L, 2005L, 
                                                                       2010L, 2000L, 2000L, 2010L, 2000L, 2000L, 2000L, 2005L, 2000L, 
                                                                       2000L, 2010L, 2000L, 2010L, 2000L, 2010L, 2010L, 2000L, 2000L, 
                                                                       2010L, 2005L, 2010L, 2010L, 2010L, 2005L, 2005L, 2010L, 2005L, 
                                                                       2000L, 2010L, 2000L, 2000L, 2000L, 2010L, 2000L, 2000L, 2000L, 
                                                                       2005L, 2010L, 2000L, 2000L, 2010L, 2005L, 2000L, 2005L, 2000L, 
                                                                       2005L, 2005L, 2005L, 2010L, 2010L, 2005L, 2010L, 2000L, 2010L, 
                                                                       2000L, 2000L, 2005L, 2005L, 2005L, 2000L, 2010L, 2010L, 2010L, 
                                                                       2000L, 2010L, 2000L, 2000L, 2005L, 2000L, 2005L, 2000L, 2005L, 
                                                                       2010L, 2000L), y = c(-0.6733445533, 0.8285518176, 1.1568811968, 
                                                                                            1.9329696378, 1.1281710909, 0.9122827105, -0.0304592075, 2.5771819259, 
                                                                                            0.0198026273, 0.3435897044, 2.3878449369, -0.6539264674, -0.0304592075, 
                                                                                            2.3194422101, 3.2854123487, 1.8764069433, 0.8754687374, 2.5463152779, 
                                                                                            0.3074846997, 1.1505720276, -1.30933332, 2.2690283095, 2.238579763, 
                                                                                            2.9932291433, -0.2876820725, 0.7747271676, 0.9282193027, 1.0473189943, 
                                                                                            1.2149127444, 1.6193882433, 1.0715836163, -1.5141277326, -1.8325814637, 
                                                                                            1.5260563035, 3.1333179365, 0.3074846997, 1.9430489168, 2.427454075, 
                                                                                            -0.5447271754, 2.4449523343, 1.6213664833, -0.6348782724, 1.7281094422, 
                                                                                            -0.7765287895, 0.6881346387, 1.0612565021, -1.347073648, 0.9707789172, 
                                                                                            3.0951250174, -1.6607312068, 1.8164520818, 1.6639260977, 1.0715836163, 
                                                                                            1.1410330046, 1.0715836163, -2.302585093, -2.302585093, -0.4620354596, 
                                                                                            2.0554049639, -1.0788096614, -0.3147107448, 3.8705758155, -0.7550225843, 
                                                                                            3.8048831299, 1.7334238922, 0.1133286853, 1.4255150743, -1.237874356, 
                                                                                            1.4678743481, 3.1166215908, 1.4206957878, -0.7133498879, 1.2809338455, 
                                                                                            1.393766376, 2.8367365421, 2.2202898503, 2.6411978941, 1.2809338455, 
                                                                                            1.986503546, 1.2974631474, 3.8514233833, 3.5717836822, -0.2107210313, 
                                                                                            -0.5621189182, 3.7235223976, -0.0943106795, 1.4109869737, 1.1151415906, 
                                                                                            -0.8439700703, 1.9006138741, -0.0304592075, 2.2985770716, 0.1655144385, 
                                                                                            3.8068846873, -1.30933332, 1.2919836816, -1.9661128564, -0.5978370008, 
                                                                                            1.9198594719, -0.7550225843, 3.9164133537, 3.024805521, 1.2296405511, 
                                                                                            -0.9942522733, -0.1278333715, -1.0788096614, 0.6312717768, 1.3609765531, 
                                                                                            2.17702187, 2.2834022736, 0.9477893989, 0.7701082217, 1.2267122913, 
                                                                                            2.2428350886, 1.7561322916, 2.4318574287, 2.6041700706, -0.0833816089, 
                                                                                            3.9025785466, 2.7511096906, 1.0296194172, 1.800058272, 1.4838746895, 
                                                                                            -0.1278333715, 2.8100049236, 1.064710737, 1.913977102, 3.4747575848, 
                                                                                            3.4793922292, -2.0402208285, 0.5247285289, 1.32175584, -0.1625189295, 
                                                                                            -0.1053605157, 1.064710737, 1.2267122913, 2.1949998823, -0.1984509387, 
                                                                                            2.2417729536, 0.2546422184, -1.0216512475, -0.5798184953, 0.6418538862, 
                                                                                            -0.4620354596, 1.6467336972, -0.5621189182, -1.4696759701, 1.3029127522, 
                                                                                            0.5007752879, -0.1165338163, 2.5128460185, -0.3147107448, 1.5260563035, 
                                                                                            -0.6348782724, 2.6019486702, -0.7550225843, 0.4382549309, -0.1743533871, 
                                                                                            0.6043159669, -0.0100503359, 1.5303947051, -1.4696759701, -0.7339691751, 
                                                                                            0.1823215568, -1.5141277326, 2.8964642719, 1.4469189829, -2.4079456087, 
                                                                                            3.8871153697, 3.5157158351, 0.4510756194, 0.3784364357, 1.2753628004, 
                                                                                            1.3480731483, -0.7133498879, -2.1202635362, 2.446685437, -0.0512932944, 
                                                                                            2.5201129055, 1.0715836163, 1.1662709371, -1.0788096614, 1.2837077723, 
                                                                                            2.0373166154, -2.2072749132, 1.887069649, -0.3011050928, 1.3137236683, 
                                                                                            -0.7765287895, -0.3147107448, -1.6607312068, 0.9707789172, -1.1086626245, 
                                                                                            1.6770965609, 3.2827891506, 3.8454557612, 2.9785861147, -0.9162907319, 
                                                                                            2.6546494244, 2.1246538845, 2.48740353, 3.2763897311, 2.8604851241, 
                                                                                            2.1459312829, 3.8753590211, 1.2499017362, 2.05796251, 1.8640801308, 
                                                                                            2.302585093, 0.5933268453, 1.9459101491, -0.8675005677, 1.3110318766, 
                                                                                            0.4510756194, -0.8439700703, -1.5141277326, -1.9661128564, -0.8439700703, 
                                                                                            3.4045251718, 1.0152306797, -0.2613647641, -1.2729656758, 3.2047769005, 
                                                                                            0.955511445, 2.5945081597, 3.1523085806, 2.1198634562, 3.6256733782, 
                                                                                            1.0473189943, 1.4996230464, 1.3110318766, 3.4830845411, 2.2617630985, 
                                                                                            2.2202898503, 2.3045830957, -0.7339691751, 1.1442227999, 1.9444805562, 
                                                                                            1.8748743759, 0.3435897044, -0.2613647641, 0.0953101798, -0.8209805521, 
                                                                                            1.3887912413, -1.7147984281, 3.0869431536, 3.7203781212, -0.7339691751, 
                                                                                            -0.7985076962, 0.8372475245), x = c(0.520716395, 0.76448135, 
                                                                                                                                0.1859026067, 0.4139582267, 0.455963932, 0.56432366, 0.6416624933, 
                                                                                                                                0.444074425, 0.41868816, 0.265443, 0.62583766, 0.286851672, 0.461673335, 
                                                                                                                                0.5781655933, 0.56065131, 0.26364296, 0.4985219733, 0.55528988, 
                                                                                                                                0.26919532, 0.412561715, 0.396095096, 0.3577011, 0.3840438467, 
                                                                                                                                0.379925565, 0.4366703067, 0.377308448, 0.67303668, 0.310457824, 
                                                                                                                                0.680926444, 0.421162232, 0.64763204, 0.4086114733, 0.189257, 
                                                                                                                                0.4532333267, 0.418217804, 0.3818111133, 0.5274238733, 0.4740385933, 
                                                                                                                                0.5051548067, 0.7800376, 0.511907415, 0.435252965, 0.484772744, 
                                                                                                                                0.2611265, 0.3427766933, 0.39252946, 0.31492562, 0.5823207, 0.640646835, 
                                                                                                                                0.4660631067, 0.681284708, 0.599554924, 0.46166572, 0.65774412, 
                                                                                                                                0.46166572, 0.46239142, 0.25585435, 0.349241016, 0.50003636, 
                                                                                                                                0.313353075, 0.480026752, 0.39368275, 0.25535868, 0.5203671933, 
                                                                                                                                0.55919694, 0.32805816, 0.36327362, 0.5645227667, 0.3182517, 
                                                                                                                                0.6154360733, 0.76258512, 0.477428292, 0.2505129333, 0.29323284, 
                                                                                                                                0.3891413067, 0.76361295, 0.51883124, 0.26491668, 0.5506494467, 
                                                                                                                                0.6694268, 0.57734314, 0.61555678, 0.434264495, 0.23289585, 0.655019476, 
                                                                                                                                0.40125994, 0.349313036, 0.299113012, 0.525231765, 0.409542412, 
                                                                                                                                0.43688136, 0.67115676, 0.313869372, 0.612537, 0.3008297133, 
                                                                                                                                0.391574355, 0.2102851, 0.434452664, 0.4266350667, 0.23922155, 
                                                                                                                                0.632421328, 0.5101546533, 0.7967896, 0.4488204, 0.573298208, 
                                                                                                                                0.313353075, 0.5731814333, 0.18508375, 0.2960349133, 0.303098115, 
                                                                                                                                0.63644668, 0.50734459, 0.6924114933, 0.29922598, 0.41864991, 
                                                                                                                                0.317488556, 0.371810575, 0.308939985, 0.562287792, 0.721651452, 
                                                                                                                                0.2128437333, 0.692473748, 0.67843838, 0.33718355, 0.50659921, 
                                                                                                                                0.403681844, 0.7430906, 0.705581225, 0.48459576, 0.19086236, 
                                                                                                                                0.273353275, 0.696210505, 0.2184086, 0.2654355, 0.403681844, 
                                                                                                                                0.58629872, 0.681284708, 0.41636569, 0.88027415, 0.3658443867, 
                                                                                                                                0.436338235, 0.2088088, 0.5567543467, 0.405381548, 0.31935366, 
                                                                                                                                0.423064352, 0.2940382933, 0.5812443, 0.314591584, 0.320143128, 
                                                                                                                                0.407616765, 0.37066398, 0.420301544, 0.3951682467, 0.430066195, 
                                                                                                                                0.4198998133, 0.1374802, 0.359664432, 0.20068, 0.374058295, 0.6433970933, 
                                                                                                                                0.2563798867, 0.6655147467, 0.2084578, 0.2244902, 0.373739, 0.681972528, 
                                                                                                                                0.378276344, 0.386861176, 0.61182554, 0.1649884, 0.4262007667, 
                                                                                                                                0.6226592067, 0.7703788, 0.448730595, 0.51076983, 0.728919716, 
                                                                                                                                0.4223420333, 0.4807863267, 0.513546168, 0.7561993333, 0.3969347333, 
                                                                                                                                0.42510414, 0.67115676, 0.3854491267, 0.7466545333, 0.329258048, 
                                                                                                                                0.73184386, 0.519955152, 0.3475113867, 0.633509884, 0.494471196, 
                                                                                                                                0.5069802867, 0.66498058, 0.374557092, 0.509559555, 0.40981766, 
                                                                                                                                0.31671136, 0.368289476, 0.35624449, 0.77207405, 0.472227684, 
                                                                                                                                0.745716025, 0.54377252, 0.536809976, 0.2916619867, 0.57879064, 
                                                                                                                                0.5064780533, 0.288768148, 0.3688028467, 0.3102560733, 0.29936902, 
                                                                                                                                0.34749761, 0.58812174, 0.4653794733, 0.4086114733, 0.423902084, 
                                                                                                                                0.305882855, 0.6150655867, 0.248726, 0.2824005133, 0.3989114, 
                                                                                                                                0.39564993, 0.403281625, 0.379191, 0.464322504, 0.314557485, 
                                                                                                                                0.661148164, 0.2923557, 0.612319748, 0.4584805133, 0.7473852, 
                                                                                                                                0.273135885, 0.76361295, 0.70575823, 0.5448304667, 0.69060902, 
                                                                                                                                0.717824748, 0.646824664, 0.1474785, 0.23526096, 0.32274084, 
                                                                                                                                0.2544196667, 0.47831574, 0.5081830467, 0.46158542, 0.36767402, 
                                                                                                                                0.7477056, 0.330186, 0.5044399933)), .Names = c("ctry", "year", 
                                                                                                                                                                                "y", "x"), row.names = c(NA, -250L), class = "data.frame")

下面是模型和结果(省略年份并尝试固定效果):

m <- lm(y ~ x + factor(year) + factor(ctry) , data=df)


    Coefficients:
                 Estimate Std. Error t value Pr(>|t|)    
    (Intercept)       2.15066    0.22311   9.640 6.69e-16 ***
    x                -0.48362    0.26969  -1.793 0.075988 .  

然后我继续用预测值进行绘图。

plot.df <- cbind(df, predict(m, newdata = df, se.fit = T, interval='confidence'))

library(ggplot2)
ggplot(data = plot.df, aes(x = x, y = fit.fit)) + 
  stat_smooth(method=lm, se=T, color='red',data = plot.df, level=0.95, aes(x=x, y=fit.fit))

Positive Slope

我为什么在回归中系数为负而在预测图中斜率为正?我觉得这与国家固定效应有关。当我在没有国家固定影响的情况下运行模型时,我得到一个正系数。预测图如何反映负系数?感谢您的时间。

1 个答案:

答案 0 :(得分:1)

您需要使模型中的所有其他变量“保持不变”,以查看xy的负偏关系:

new.x <- seq(0.25, 0.75, 0.01)
pred.y <- predict(m, newdata=data.frame(x=new.x, year="2005", ctry="AGO"))
plot(x=new.x, y=pred.y, pch=20)

看到正相关关系的原因是,当您进行predict()时,您使用的是数据集中的任何数据,特别是其中和< / em>您具有的年份和国家/地区值。必须将x的较高值与具有正系数的国家或年份相关联,以抵消x的负面影响。

此现象的一般版本称为Simpson's Paradox