HoughLinesP未检测到预期的行

时间:2018-08-12 15:54:35

标签: python opencv

我正在尝试OpenCV进行一些图像处理。诚然,我对这个东西不感兴趣,但是我觉得我的脑袋有些缠绕。我正在使用遮罩来检测图像的较亮区域,然后运行Canny检测器,最后运行HoughLinesP检测。代码如下。我得到的结果是:

enter image description here

我的期望(和愿望)更像下面(注意结果上的红线):

enter image description here

对于它的价值,我的最终目的是自动旋转图像,使收据平直。如果我完全走错了路,请多多指教。

import cv2
import numpy as np
from matplotlib import pyplot


def detect_lines(img):

    temp = cv2.cvtColor(img,cv2.COLOR_BGR2HLS)
    lower = np.uint8([0, 160, 0])
    upper = np.uint8([255, 255, 255])
    white_mask = cv2.inRange(temp, lower, upper)

    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    gray = cv2.blur(gray, (3, 3))

    canny_low = 100
    edges = cv2.Canny(white_mask, canny_low, canny_low * 3, apertureSize=5)
    lines = cv2.HoughLinesP(edges, 1, np.pi/180, 10, 2, 80)

    result = img.copy()
    if lines is not None:
        for x in range(0, len(lines)):
            for x1, y1, x2, y2 in lines[x]:
                print(x1, y1, x2, y2)
                cv2.line(result, (x1, y1), (x2, y2), (255, 0, 0), 2)

    pyplot.subplot(141), pyplot.imshow(img, cmap='gray')
    pyplot.title('Original Image'), pyplot.xticks([]), pyplot.yticks([])

    pyplot.subplot(142), pyplot.imshow(white_mask, cmap='gray')
    pyplot.title('Gray Image'), pyplot.xticks([]), pyplot.yticks([])

    pyplot.subplot(143), pyplot.imshow(edges, cmap='gray')
    pyplot.title('Edge Image'), pyplot.xticks([]), pyplot.yticks([])

    pyplot.subplot(144), pyplot.imshow(result, cmap='gray')
    pyplot.title('Result Image'), pyplot.xticks([]), pyplot.yticks([])

    pyplot.show()
    return img


if __name__ == '__main__':

    image = cv2.imread('receipt.jpg')
    image = detect_lines(image)
    cv2.imwrite('output.jpg', image)

1 个答案:

答案 0 :(得分:1)

我建议您开始考虑使用其他Morphological Transformations,您可以将其应用于Canny边缘检测,以改善霍夫线变换。

这不是完美的方法,但是它可以帮助您入门:

import cv2
import numpy as np
from matplotlib import pyplot


def detect_lines(img):

    temp = cv2.cvtColor(img,cv2.COLOR_BGR2HLS)
    kernel = np.ones((5, 5), np.uint8) # < --- Added a kernel you can differ
    lower = np.uint8([0, 160, 0])
    upper = np.uint8([255, 255, 255])
    white_mask = cv2.inRange(temp, lower, upper)

    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    gray = cv2.blur(gray, (3, 3))

    canny_low = 100
    edges = cv2.Canny(white_mask, canny_low, canny_low * 3, apertureSize=3)
    dilate = cv2.dilate(edges, kernel, iterations=2) # < --- Added a dilate, check link I provided
    ero = cv2.erode(dilate, kernel, iterations=1) # < --- Added an erosion, check link I provided
    lines = cv2.HoughLinesP(dilate, 1, np.pi/180, 10, 2, 80)

    result = img.copy()
    if lines is not None:
        for x in range(0, len(lines)):
            for x1, y1, x2, y2 in lines[x]:
                print(x1, y1, x2, y2)
                cv2.line(result, (x1, y1), (x2, y2), (255, 0, 0), 2)

    pyplot.subplot(151), pyplot.imshow(img, cmap='gray')
    pyplot.title('Original Image'), pyplot.xticks([]), pyplot.yticks([])

    pyplot.subplot(152), pyplot.imshow(white_mask, cmap='gray')
    pyplot.title('Mask Image'), pyplot.xticks([]), pyplot.yticks([])

    pyplot.subplot(153), pyplot.imshow(edges, cmap='gray')
    pyplot.title('Edge Image'), pyplot.xticks([]), pyplot.yticks([])

    pyplot.subplot(154), pyplot.imshow(ero, cmap='gray')
    pyplot.title('Dilate/Erosion Image'), pyplot.xticks([]), pyplot.yticks([]) # <--- Added a display

    pyplot.subplot(155), pyplot.imshow(result, cmap='gray')
    pyplot.title('Result Image'), pyplot.xticks([]), pyplot.yticks([])

    pyplot.show()
    return result # <--- You want to return the result right?


if __name__ == '__main__':

    image = cv2.imread('receipt.jpg')
    image = detect_lines(image)
    cv2.imwrite('output.jpg', image)

enter image description here

另一种方法可能是调查Corner Detection,然后在检测到的角之间画一条线(我没有尝试过这种方法,但这只是出于启发:))。