我想使用Ceres优化n个参数的函数。尽管我确实有明确的成本,但如何找到此函数的梯度尚不清楚。到目前为止,我一直在使用带有数值微分的GSL,但我想我会尝试将Ceres与自动差异一起使用。
我看了一个玩具示例helloworld_analytic_diff.cc,其中他们使用AutoDiff最小化函数f(x)= 0.5(10-x)^ 2并阅读了教程,所以我想我会尝试并将其扩展到二维函数f(x,y)=(10-x)^ 2 +(20- y)^ 2,该函数在x,y = 10,20处具有全局最小值。但是我得到一个有点卡住了:
#include "ceres/ceres.h"
#include "glog/logging.h"
using ceres::AutoDiffCostFunction;
using ceres::CostFunction;
using ceres::Problem;
using ceres::Solver;
using ceres::Solve;
struct CostFunctor {
template <typename T> bool operator()(const T* const x, T* residual) const {
const T x1 = x[0];
const T y1 = x[1];
residual[0] = (10.0-x[0]) + (20.0-x[1]);
return true;
}
};
int main(int argc, char** argv) {
google::InitGoogleLogging(argv[0]);
double x[2] = {0.5, -3.0};
const double initial_x[2] = {0.5, -3.0};
Problem problem;
CostFunction* cost_function = new AutoDiffCostFunction<CostFunctor, 1, 2>(new CostFunctor);
problem.AddResidualBlock(cost_function, NULL, &x[0]);
// Run the solver!
Solver::Options options;
options.minimizer_progress_to_stdout = true;
Solver::Summary summary;
Solve(options, &problem, &summary);
std::cout << summary.BriefReport() << "\n";
std::cout << "x : " << initial_x[0] << ", " << initial_x[0]
<< " -> " << x[0] << ", " << x[1]<< "\n";
return 0;
}
但是,如果我运行此命令,最终会收敛到不正确的内容,具体取决于最初的猜测:
Ceres Solver Report: Iterations: 3, Initial cost: 5.281250e+02, Final cost: 3.667046e-16, Termination: CONVERGENCE
x : 0.5, 0.5 -> 16.75, 13.25
关于我在这里做错了什么的任何想法? 非常感谢!
答案 0 :(得分:0)
您的费用函子是错误的。 您要解决的优化问题是
[((10.0-x)+(20.0-y)] ^ 2
不是
(10-x)^ 2 +(20- y)^ 2,
您应该在这里拥有两个成本函子,如下所示:
struct CostFunctor1 {
template <typename T> bool operator()(const T* const x, T* residual) const {
residual[0] = 10.0-x[0];
return true;
}
};
struct CostFunctor2 {
template <typename T> bool operator()(const T* const x, T* residual) const {
residual[0] = 20.0-x[1];
return true;
}
};
int main(int argc, char** argv) {
google::InitGoogleLogging(argv[0]);
double x[2] = {0.5, -3.0};
const double initial_x[2] = {0.5, -3.0};
Problem problem;
problem.AddResidualBlock(new AutoDiffCostFunction<CostFunctor1, 1, 2>(new
CostFunctor1), NULL, &x[0]);
problem.AddResidualBlock(new AutoDiffCostFunction<CostFunctor2, 1, 2>(new
CostFunctor2), NULL, &x[0]);
// Run the solver!
Solver::Options options;
options.minimizer_progress_to_stdout = true;
Solver::Summary summary;
Solve(options, &problem, &summary);
std::cout << summary.BriefReport() << "\n";
std::cout << "x : " << initial_x[0] << ", " << initial_x[0]
<< " -> " << x[0] << ", " << x[1]<< "\n";
return 0;
}