我正在尝试学习如何通过sklearn处理文本数据,并且遇到了我无法解决的问题。
我要关注的教程是:http://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html
输入是具有两列的pandas df。一个带有文本,一个带有二进制类。
代码:
from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import Pipeline
traindf, testdf = train_test_split(nlp_df, stratify=nlp_df['class'])
x_train = traindf['text']
x_test = traindf['text']
y_train = traindf['class']
y_test = testdf['class']
# CV
count_vect = CountVectorizer(stop_words='english')
x_train_modified = count_vect.fit_transform(x_train)
x_test_modified = count_vect.transform(x_test)
# TF-IDF
idf = TfidfTransformer()
fit = idf.fit(x_train_modified)
x_train_mod2 = fit.transform(x_train_modified)
# MNB
mnb = MultinomialNB()
x_train_data = mnb.fit(x_train_mod2, y_train)
text_clf = Pipeline([('vect', CountVectorizer()),
('tfidf', TfidfTransformer()),
('clf', MultinomialNB()),
])
predicted = text_clf.predict(x_test_modified)
当我尝试运行最后一行时:
---------------------------------------------------------------------------
NotFittedError Traceback (most recent call last)
<ipython-input-64-8815003b4713> in <module>()
----> 1 predicted = text_clf.predict(x_test_modified)
~/anaconda3/lib/python3.6/site-packages/sklearn/utils/metaestimators.py in <lambda>(*args, **kwargs)
113
114 # lambda, but not partial, allows help() to work with update_wrapper
--> 115 out = lambda *args, **kwargs: self.fn(obj, *args, **kwargs)
116 # update the docstring of the returned function
117 update_wrapper(out, self.fn)
~/anaconda3/lib/python3.6/site-packages/sklearn/pipeline.py in predict(self, X)
304 for name, transform in self.steps[:-1]:
305 if transform is not None:
--> 306 Xt = transform.transform(Xt)
307 return self.steps[-1][-1].predict(Xt)
308
~/anaconda3/lib/python3.6/site-packages/sklearn/feature_extraction/text.py in transform(self, raw_documents)
918 self._validate_vocabulary()
919
--> 920 self._check_vocabulary()
921
922 # use the same matrix-building strategy as fit_transform
~/anaconda3/lib/python3.6/site-packages/sklearn/feature_extraction/text.py in _check_vocabulary(self)
301 """Check if vocabulary is empty or missing (not fit-ed)"""
302 msg = "%(name)s - Vocabulary wasn't fitted."
--> 303 check_is_fitted(self, 'vocabulary_', msg=msg),
304
305 if len(self.vocabulary_) == 0:
~/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py in check_is_fitted(estimator, attributes, msg, all_or_any)
766
767 if not all_or_any([hasattr(estimator, attr) for attr in attributes]):
--> 768 raise NotFittedError(msg % {'name': type(estimator).__name__})
769
770
NotFittedError: CountVectorizer - Vocabulary wasn't fitted.
有关如何解决此错误的任何建议?我在测试数据上正确地转换了CV模型。我什至检查了词汇表是否为空并且不是(count_vect.vocabulary _)
谢谢!
答案 0 :(得分:0)
您的问题有几个问题。
对于初学者来说,实际上并没有 fit 管道,因此会出现错误。在linked tutorial中更仔细地查看,您会发现有一个步骤text_clf.fit
(其中text_clf
实际上是管道)。
第二,您没有正确使用管道的概念,这正好适合端到端的全部内容;相反,您可以逐一拟合它的各个组件...如果再次查看本教程,您会发现管道拟合的代码:
text_clf.fit(twenty_train.data, twenty_train.target)
像您一样使用数据的初始格式,而不是 中间转换;本教程的重点是演示如何将单个转换包装在管道中(并用管道替换),不在这些转换之上使用管道...
第三,应避免将变量命名为fit
-这是一个保留关键字;同样,我们不使用CV来缩写Count Vectorizer(在ML术语中,CV表示交叉验证)。
也就是说,这是使用管道的正确方法:
from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import Pipeline
traindf, testdf = train_test_split(nlp_df, stratify=nlp_df['class'])
x_train = traindf['text']
x_test = traindf['text']
y_train = traindf['class']
y_test = testdf['class']
text_clf = Pipeline([('vect', CountVectorizer(stop_words='english')),
('tfidf', TfidfTransformer()),
('clf', MultinomialNB()),
])
text_clf.fit(x_train, y_train)
predicted = text_clf.predict(x_test)
如您所见,流水线的目的是使事情变得更简单(与按顺序依次使用组件相比),而不是进一步使其复杂化...