sklearn CountVectorizer

时间:2017-10-09 15:39:44

标签: python-2.7 machine-learning scikit-learn countvectorizer

我怀疑使用vocabulary_.get,代码如下。 如下所示,我在其中一个机器学习练习中使用了CountVectorizer来获取特定单词的出现次数。

from sklearn.feature_extraction.text import CountVectorizer
vectorizer = CountVectorizer()
s1 = 'KJ YOU WILL BE FINE'
s2 = 'ABHI IS MY BESTIE'
s3 = 'sam is my bestie'
frnd_list = [s1,s2,s3]
bag_of_words = vectorizer.fit(frnd_list)
bag_of_words = vectorizer.transform(frnd_list)
print(bag_of_words)
# To get the feature word number from word 
#for eg:
print(vectorizer.vocabulary_.get('bestie'))
print(vectorizer.vocabulary_.get('BESTIE'))

输出:

Bag_of_words is :
(0, 1)  1
(0, 3)  1
(0, 5)  1
(0, 8)  1
(0, 9)  1
(1, 0)  1
(1, 2)  1
(1, 4)  1
(1, 6)  1
(2, 2)  1
(2, 4)  1
(2, 6)  1
(2, 7)  1

'bestie' has  feature number:
 2
'BESTIE' has feature number:
 None

因此我怀疑为什么'bistie'显示正确的特征编号,即2,'BESTIE'显示无。 vocabulary_.get不能很好地适用于资本向量吗?

2 个答案:

答案 0 :(得分:1)

CountVectorizer采用默认为lowercase的参数True,如文档here中所述:

lowercase : boolean, True by default
    Convert all characters to lowercase before tokenizing.

如果要以不同方式处理小写和大写,请将其更改为False

答案 1 :(得分:0)

countvectorizer采用参数“小写”,默认情况下,其值为true

如果我们要区分大小写字母,请设置小写= False

enter image description here

有关更多信息,请单击此处http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html