我想计算R值随窗口大小变化的移动平均值。更具体地说:移动平均线应在三年内计算,但数据(时间序列)的使用频率较高,并且每个三年窗口的窗口大小可能会有所不同。
假设以下数据集:
library(data.table)
set.seed(1) # reproduceable data
dataset <- data.table(ID=c(rep("A",2208),rep("B",2208)),
x = c(rnorm(2208*2)), time=c(seq(as.Date("1988/03/15"),
as.Date("2000/04/16"), "day"),seq(as.Date("1988/03/15"),
as.Date("2000/04/16"), "day")))
应该为两个ID(人A和B)计算变量x的三年移动平均值。可以最好使用zoo
和datatable
来做到这一点吗?但是任何解决方案都可以。
请注意,我知道如何使用固定的窗口大小执行此操作,这里的问题是窗口大小不断变化。
答案 0 :(得分:4)
如果我理解正确,那么OP希望精确地跨度3年。由于这可能包括leap年,因此窗口大小可以是1095天或1096天。
这可以通过将聚集在非等额联接中以及lubridate
的回滚日期算术来解决。
library(data.table)
library(lubridate)
# create 3 years windows for each ID for later non-equi join
win <- dataset[, CJ(ID = ID, start = time, unique = TRUE)][
# make sure to pick
, end := start %m+% years(3) - days(1)][
# remove windows which end out of date range
end <= max(start)]
win
ID start end 1: A 1988-03-15 1991-03-14 2: A 1988-03-16 1991-03-15 3: A 1988-03-17 1991-03-16 4: A 1988-03-18 1991-03-17 5: A 1988-03-19 1991-03-18 --- 6638: B 1997-04-13 2000-04-12 6639: B 1997-04-14 2000-04-13 6640: B 1997-04-15 2000-04-14 6641: B 1997-04-16 2000-04-15 6642: B 1997-04-17 2000-04-16
# check window lengths
win[, .N, by = .(days = end - start + 1L)]
days N 1: 1095 days 2166 2: 1096 days 4476
# see what happens in leap years
win[leap_year(start) & month(start) == 2 & day(start) %in% 28:29,
.(start, end, days = end - start + 1L)]
start end days 1: 1992-02-28 1995-02-27 1096 days 2: 1992-02-29 1995-02-27 1095 days 3: 1996-02-28 1999-02-27 1096 days 4: 1996-02-29 1999-02-27 1095 days 5: 1992-02-28 1995-02-27 1096 days 6: 1992-02-29 1995-02-27 1095 days 7: 1996-02-28 1999-02-27 1096 days 8: 1996-02-29 1999-02-27 1095 days
win[leap_year(end) & month(end) == 2 & day(end) %in% 28:29,
.(start, end, days = end - start + 1L)]
start end days 1: 1989-03-01 1992-02-29 1096 days 2: 1993-03-01 1996-02-29 1096 days 3: 1997-03-01 2000-02-29 1096 days 4: 1989-03-01 1992-02-29 1096 days 5: 1993-03-01 1996-02-29 1096 days 6: 1997-03-01 2000-02-29 1096 days
# aggregate in a non-equi-join
dataset[win, on = .(ID, time >= start, time <= end), by = .EACHI, .(avg = mean(x))]
ID time time avg 1: A 1988-03-15 1991-03-14 -0.01184078 2: A 1988-03-16 1991-03-15 -0.01317813 3: A 1988-03-17 1991-03-16 -0.01179571 4: A 1988-03-18 1991-03-17 -0.01006100 5: A 1988-03-19 1991-03-18 -0.01221798 --- 6638: B 1997-04-13 2000-04-12 -0.03412214 6639: B 1997-04-14 2000-04-13 -0.03604176 6640: B 1997-04-15 2000-04-14 -0.03556291 6641: B 1997-04-16 2000-04-15 -0.03392185 6642: B 1997-04-17 2000-04-16 -0.03393674
答案 1 :(得分:2)
正如@ A.Suliman在评论中提到的那样,示例数据的窗口宽度是固定的,但让我们假设您的真实数据没有,这就是您的文字所说的。
width
中的参数rollapply
不必是常数,因此我们可以先计算宽度,确保将窗口向左对齐,然后运行rollaply
。
library(zoo)
library(tidyverse)
dataset %>%
arrange(ID,time) %>%
group_by(ID) %>%
mutate(avg = rollapply(x, FUN = mean, align = "left",
width = map_dbl(time, ~which.max(time[time < .x + 3*365.25])) - row_number()+1))
#
# # A tibble: 8,832 x 4
# # Groups: ID [2]
# ID x time avg
# <fctr> <dbl> <date> <dbl>
# 1 A -0.0258 1988-03-15 0.0109
# 2 A -0.0258 1988-03-15 0.0109
# 3 A -0.1562 1988-03-16 0.0115
# 4 A -0.1562 1988-03-16 0.0115
# 5 A 0.8193 1988-03-17 0.0115
# 6 A 0.8193 1988-03-17 0.0112
# 7 A -1.1136 1988-03-18 0.0102
# 8 A -1.1136 1988-03-18 0.0107
# 9 A -0.9336 1988-03-19 0.0105
# 10 A -0.9336 1988-03-19 0.0109