简单的Pyspark UDF使用razorvine_pickle获取numpy错误

时间:2018-08-08 14:55:38

标签: python apache-spark pyspark

我有一个DataFrame,其中的列包含用'|'分隔的数据,我想按行复制(例如,对于给定的列,如果某行具有以下形式:'a'|'b'| 'c',那么我想在分别包含'a','b'和'c'的3个独立行中重复此操作,这将导致DataFrame的行数是原始行的3倍)。因此,我在Python 3.5.5上编写了以下算法:

def col_pipe_duplicater(col):
   wanted_shape_0 = 8161560
   ls = list(col)
   ls = [elem.split('|') for elem in ls]
   ls = np.concatenate([np.array(i) for i in ls])
   actual_shape_0 = ls.shape[0]
   duplication_ratio = int(wanted_shape_0/actual_shape_0)
   if duplication_ratio>1:
       ls = [[elem]*duplication_ratio for elem in list(ls)]
       return np.concatenate([np.array(i) for i in ls])
   else: 
       return ls

该算法按预期工作,但是当我尝试将其移动到pyspark时(我在MacBook Pro上使用Spark 2.3.1使用Jupyter Docker Stack(pyspark-notebook)),如下所示:

from pyspark.sql.types import ArrayType, StringType
import numpy as np
import pandas as pd

pipe_remover_udf = udf(lambda col : col_pipe_duplicater(col))#,ArrayType(StringType()))
#GPS is a regular pyspark.sql.dataframe.DataFrame
(
GPS.select('GPS_COORDINATES',
pipe_remover_udf('GPS_COORDINATES').alias('New')).show()
)

但是出现以下错误:

Py4JJavaError: An error occurred while calling o115.showString.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 5.0 failed 1 times, most recent     failure: Lost task 0.0 in stage 5.0 (TID 9, localhost, executor driver): net.razorvine.pickle.PickleException: expected     zero arguments for construction of ClassDict (for numpy.core.multiarray._reconstruct)
    at net.razorvine.pickle.objects.ClassDictConstructor.construct(ClassDictConstructor.java:23)
    at net.razorvine.pickle.Unpickler.load_reduce(Unpickler.java:707)
    at net.razorvine.pickle.Unpickler.dispatch(Unpickler.java:175)
    at net.razorvine.pickle.Unpickler.load(Unpickler.java:99)
    at net.razorvine.pickle.Unpickler.loads(Unpickler.java:112)
    at org.apache.spark.sql.execution.python.BatchEvalPythonExec$$anonfun$evaluate$1.apply(BatchEvalPythonExec.scala:86)
    at org.apache.spark.sql.execution.python.BatchEvalPythonExec$$anonfun$evaluate$1.apply(BatchEvalPythonExec.scala:85)
    at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)
    at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
    at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
    at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage3.processNext(Unknown     Source)
    at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
    at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$10$$anon$1.hasNext(WholeStageCodegenExec.scala:614)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:253)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:247)
    at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:830)
    at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:830)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
    at org.apache.spark.scheduler.Task.run(Task.scala:109)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)

Driver stacktrace:
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(    DAGScheduler.scala:1602)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1590)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1589)
    at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
    at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1589)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:831)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:831)
    at scala.Option.foreach(Option.scala:257)
    at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:831)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1823)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1772)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1761)
    at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
    at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:642)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2034)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2055)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2074)
    at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:363)
    at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
    at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:3273)
    at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2484)
    at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2484)
    at org.apache.spark.sql.Dataset$$anonfun$52.apply(Dataset.scala:3254)
    at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:77)
    at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3253)
    at org.apache.spark.sql.Dataset.head(Dataset.scala:2484)
    at org.apache.spark.sql.Dataset.take(Dataset.scala:2698)
    at org.apache.spark.sql.Dataset.showString(Dataset.scala:254)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
    at py4j.Gateway.invoke(Gateway.java:282)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.GatewayConnection.run(GatewayConnection.java:238)
    at java.lang.Thread.run(Thread.java:748)
Caused by: net.razorvine.pickle.PickleException: expected zero arguments for construction of ClassDict (for     numpy.core.multiarray._reconstruct)
    at net.razorvine.pickle.objects.ClassDictConstructor.construct(ClassDictConstructor.java:23)
    at net.razorvine.pickle.Unpickler.load_reduce(Unpickler.java:707)
    at net.razorvine.pickle.Unpickler.dispatch(Unpickler.java:175)
    at net.razorvine.pickle.Unpickler.load(Unpickler.java:99)
    at net.razorvine.pickle.Unpickler.loads(Unpickler.java:112)
    at org.apache.spark.sql.execution.python.BatchEvalPythonExec$$anonfun$evaluate$1.apply(BatchEvalPythonExec.scala:86)
    at org.apache.spark.sql.execution.python.BatchEvalPythonExec$$anonfun$evaluate$1.apply(BatchEvalPythonExec.scala:85)
    at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)
    at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
    at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
    at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage3.processNext(Unknown     Source)
    at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
    at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$10$$anon$1.hasNext(WholeStageCodegenExec.scala:614)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:253)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:247)
    at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:830)
    at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:830)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
    at org.apache.spark.scheduler.Task.run(Task.scala:109)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    ... 1 more

在Spark WebUI的阶段部分,我在工作中遇到此错误:

Job aborted due to stage failure: Task 0 in stage 5.0 failed 1 times, most recent failure: Lost task 0.0 in stage 5.0 (TID 9, localhost, executor driver): net.razorvine.pickle.PickleException: expected zero arguments for construction of ClassDict (for numpy.core.multiarray._reconstruct)
    at net.razorvine.pickle.objects.ClassDictConstructor.construct(ClassDictConstructor.java:23)
    at net.razorvine.pickle.Unpickler.load_reduce(Unpickler.java:707)
    at net.razorvine.pickle.Unpickler.dispatch(Unpickler.java:175)
    at net.razorvine.pickle.Unpickler.load(Unpickler.java:99)
    at net.razorvine.pickle.Unpickler.loads(Unpickler.java:112)
    at org.apache.spark.sql.execution.python.BatchEvalPythonExec$$anonfun$evaluate$1.apply(BatchEvalPythonExec.scala:86)
    at org.apache.spark.sql.execution.python.BatchEvalPythonExec$$anonfun$evaluate$1.apply(BatchEvalPythonExec.scala:85)
    at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)
    at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
    at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
    at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage3.processNext(Unknown  Source)
    at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
    at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$10$$anon$1.hasNext(WholeStageCodegenExec.scala:614)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:253)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:247)
    at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:830)
    at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:830)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
    at org.apache.spark.scheduler.Task.run(Task.scala:109)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)

Driver stacktrace:

您知道此错误的原因是什么,还是我的代码没有经过pyspark优化?

谢谢您的帮助。

0 个答案:

没有答案