Py4J无法序列化PySpark UDF

时间:2018-05-09 01:14:57

标签: python numpy apache-spark pyspark py4j

我试图计算火花数据帧中每一行的随机向量的欧几里德距离。最初是一个叫做omatrix的pandas df,每一列都是一个单词,每一行都是一个表示为1和0&s 39的矢量的句子,其中1表示该单词存在,0表示该单词。

import numpy as np

randv = np.random.rand(len(omatrix.columns))

def distance(x):
    return np.linalg.norm(x-randv).item()

dist = udf(distance, FloatType())

df = spark.createDataFrame([[word] for word in omatrix.values.tolist()], schema=["features"])
df.printSchema()
df.show(5)

这成功输出:

root
 |-- features: array (nullable = true)
 |    |-- element: long (containsNull = true)

+--------------------+
|            features|
+--------------------+
|[0, 0, 0, 0, 0, 0...|
|[0, 0, 0, 0, 0, 0...|
|[0, 1, 0, 0, 1, 0...|
|[0, 0, 0, 0, 0, 1...|
|[0, 1, 0, 1, 0, 0...|
+--------------------+
only showing top 5 rows

现在我想我可以使用withColumn()来计算距离:

df = df.withColumn('distance', dist(df.features))
df.select(df.distance).show(5)

第二行导致stacktrace:

---------------------------------------------------------------------------
Py4JJavaError                             Traceback (most recent call last)
<ipython-input-27-1a55784bd46e> in <module>()
----> 1 vdf.select(vdf.distance).show(5)

/home/jakeu123/spark/python/pyspark/sql/dataframe.pyc in show(self, n, truncate, vertical)
    348         """
    349         if isinstance(truncate, bool) and truncate:
--> 350             print(self._jdf.showString(n, 20, vertical))
    351         else:
    352             print(self._jdf.showString(n, int(truncate), vertical))

/home/jakeu123/spark/python/lib/py4j-0.10.6-src.zip/py4j/java_gateway.py in __call__(self, *args)
   1158         answer = self.gateway_client.send_command(command)
   1159         return_value = get_return_value(
-> 1160             answer, self.gateway_client, self.target_id, self.name)
   1161 
   1162         for temp_arg in temp_args:

/home/jakeu123/spark/python/pyspark/sql/utils.pyc in deco(*a, **kw)
     61     def deco(*a, **kw):
     62         try:
---> 63             return f(*a, **kw)
     64         except py4j.protocol.Py4JJavaError as e:
     65             s = e.java_exception.toString()

/home/jakeu123/spark/python/lib/py4j-0.10.6-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
    318                 raise Py4JJavaError(
    319                     "An error occurred while calling {0}{1}{2}.\n".
--> 320                     format(target_id, ".", name), value)
    321             else:
    322                 raise Py4JError(

Py4JJavaError: An error occurred while calling o311.showString.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 11.0 failed 4 times, most recent failure: Lost task 0.3 in stage 11.0 (TID 24, 10.142.0.5, executor 0): org.apache.spark.api.python.PythonException: Traceback (most recent call last):
  File "/home/jakeu123/spark/python/lib/pyspark.zip/pyspark/worker.py", line 218, in main
    func, profiler, deserializer, serializer = read_udfs(pickleSer, infile, eval_type)
  File "/home/jakeu123/spark/python/lib/pyspark.zip/pyspark/worker.py", line 138, in read_udfs
    arg_offsets, udf = read_single_udf(pickleSer, infile, eval_type)
  File "/home/jakeu123/spark/python/lib/pyspark.zip/pyspark/worker.py", line 118, in read_single_udf
    f, return_type = read_command(pickleSer, infile)
  File "/home/jakeu123/spark/python/lib/pyspark.zip/pyspark/worker.py", line 58, in read_command
    command = serializer._read_with_length(file)
  File "/home/jakeu123/spark/python/lib/pyspark.zip/pyspark/serializers.py", line 170, in _read_with_length
    return self.loads(obj)
  File "/home/jakeu123/spark/python/lib/pyspark.zip/pyspark/serializers.py", line 562, in loads
    return pickle.loads(obj)
  File "/home/jakeu123/spark/python/lib/pyspark.zip/pyspark/cloudpickle.py", line 929, in subimport
    __import__(name)
ImportError: ('No module named numpy.linalg.linalg', <function subimport at 0x7ff875f3c6e0>, ('numpy.linalg.linalg',))

    at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:298)
    at org.apache.spark.sql.execution.python.PythonUDFRunner$$anon$1.read(PythonUDFRunner.scala:83)
    at org.apache.spark.sql.execution.python.PythonUDFRunner$$anon$1.read(PythonUDFRunner.scala:66)
    at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:252)
    at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
    at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:439)
    at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
    at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
    at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
    at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$10$$anon$1.hasNext(WholeStageCodegenExec.scala:614)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:253)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:247)
    at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:830)
    at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:830)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
    at org.apache.spark.scheduler.Task.run(Task.scala:109)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)

Driver stacktrace:
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1599)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1587)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1586)
    at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
    at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1586)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:831)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:831)
    at scala.Option.foreach(Option.scala:257)
    at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:831)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1820)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1769)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1758)
    at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
    at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:642)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2027)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2048)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2067)
    at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:363)
    at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
    at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:3272)
    at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2484)
    at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2484)
    at org.apache.spark.sql.Dataset$$anonfun$52.apply(Dataset.scala:3253)
    at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:77)
    at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3252)
    at org.apache.spark.sql.Dataset.head(Dataset.scala:2484)
    at org.apache.spark.sql.Dataset.take(Dataset.scala:2698)
    at org.apache.spark.sql.Dataset.showString(Dataset.scala:254)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
    at py4j.Gateway.invoke(Gateway.java:282)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.GatewayConnection.run(GatewayConnection.java:214)
    at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.api.python.PythonException: Traceback (most recent call last):
  File "/home/jakeu123/spark/python/lib/pyspark.zip/pyspark/worker.py", line 218, in main
    func, profiler, deserializer, serializer = read_udfs(pickleSer, infile, eval_type)
  File "/home/jakeu123/spark/python/lib/pyspark.zip/pyspark/worker.py", line 138, in read_udfs
    arg_offsets, udf = read_single_udf(pickleSer, infile, eval_type)
  File "/home/jakeu123/spark/python/lib/pyspark.zip/pyspark/worker.py", line 118, in read_single_udf
    f, return_type = read_command(pickleSer, infile)
  File "/home/jakeu123/spark/python/lib/pyspark.zip/pyspark/worker.py", line 58, in read_command
    command = serializer._read_with_length(file)
  File "/home/jakeu123/spark/python/lib/pyspark.zip/pyspark/serializers.py", line 170, in _read_with_length
    return self.loads(obj)
  File "/home/jakeu123/spark/python/lib/pyspark.zip/pyspark/serializers.py", line 562, in loads
    return pickle.loads(obj)
  File "/home/jakeu123/spark/python/lib/pyspark.zip/pyspark/cloudpickle.py", line 929, in subimport
    __import__(name)
ImportError: ('No module named numpy.linalg.linalg', <function subimport at 0x7ff875f3c6e0>, ('numpy.linalg.linalg',))

    at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:298)
    at org.apache.spark.sql.execution.python.PythonUDFRunner$$anon$1.read(PythonUDFRunner.scala:83)
    at org.apache.spark.sql.execution.python.PythonUDFRunner$$anon$1.read(PythonUDFRunner.scala:66)
    at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:252)
    at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
    at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:439)
    at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
    at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
    at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
    at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$10$$anon$1.hasNext(WholeStageCodegenExec.scala:614)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:253)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:247)
    at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:830)
    at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:830)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
    at org.apache.spark.scheduler.Task.run(Task.scala:109)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    ... 1 more

为什么Py4J试图导入numpy.linalg.linalg?或者是造成这种情况的另一个问题?

0 个答案:

没有答案