使用许多虚拟变量的Python OneHotEncoder还是更好的做法?

时间:2018-08-08 13:42:23

标签: python neural-network dummy-variable one-hot-encoding

我正在构建一个神经网络,并打算在许多独立(类别)变量上使用OneHotEncoder。我想知道是否可以正确地使用虚拟变量,或者由于我的所有变量都需要虚拟变量,所以可能会有更好的方法。

df  
    UserName    Token                       ThreadID    ChildEXE       
0   TAG     TokenElevationTypeDefault (1)   20788       splunk-MonitorNoHandle.exe  
1   TAG     TokenElevationTypeDefault (1)   19088       splunk-optimize.exe 
2   TAG     TokenElevationTypeDefault (1)   2840        net.exe 
807 User    TokenElevationTypeFull (2)      18740       E2CheckFileSync.exe 
808 User    TokenElevationTypeFull (2)      18740       E2check.exe 
809 User    TokenElevationTypeFull (2)      18740       E2check.exe 
811 Local   TokenElevationTypeFull (2)      18740       sc.exe  

ParentEXE           ChildFilePath               ParentFilePath   
splunkd.exe         C:\Program Files\Splunk\bin C:\Program Files\Splunk\bin 0
splunkd.exe         C:\Program Files\Splunk\bin C:\Program Files\Splunk\bin 0
dagent.exe          C:\Windows\System32         C:\Program Files\Dagent 0
wscript.exe         \Device\Mup\sysvol          C:\Windows  1
E2CheckFileSync.exe C:\Util                     \Device\Mup\sysvol\ 1
cmd.exe             C:\Windows\SysWOW64         C:\Util\E2Check 1
cmd.exe             C:\Windows                  C:\Windows\SysWOW64 1

DependentVariable
0
0
0
1
1
1
1

我导入数据并在自变量上使用LabelEncoder

from sklearn.preprocessing import LabelEncoder, OneHotEncoder

#IMPORT DATA
#Matrix x of features
X = df.iloc[:, 0:7].values
#Dependent variable
y = df.iloc[:, 7].values

#Encoding Independent Variable
#Need a label encoder for every categorical variable
#Converts categorical into number - set correct index of column
#Encode "UserName"
labelencoder_X_1 = LabelEncoder()
X[:, 0] = labelencoder_X_1.fit_transform(X[:, 0])
#Encode "Token"
labelencoder_X_2 = LabelEncoder()
X[:, 1] = labelencoder_X_2.fit_transform(X[:, 1])
#Encode "ChildEXE"
labelencoder_X_3 = LabelEncoder()
X[:, 3] = labelencoder_X_3.fit_transform(X[:, 3])
#Encode "ParentEXE"
labelencoder_X_4 = LabelEncoder()
X[:, 4] = labelencoder_X_4.fit_transform(X[:, 4])
#Encode "ChildFilePath"
labelencoder_X_5 = LabelEncoder()
X[:, 5] = labelencoder_X_5.fit_transform(X[:, 5])
#Encode "ParentFilePath"
labelencoder_X_6 = LabelEncoder()
X[:, 6] = labelencoder_X_6.fit_transform(X[:, 6])

这给了我以下数组:

X
array([[2, 0, 20788, ..., 46, 31, 24],
       [2, 0, 19088, ..., 46, 31, 24],
       [2, 0, 2840, ..., 27, 42, 15],
       ...,
       [2, 0, 20148, ..., 17, 40, 32],
       [2, 0, 20148, ..., 47, 23, 0],
       [2, 0, 3176, ..., 48, 42, 32]], dtype=object)

现在,对于所有自变量,我必须创建虚拟变量:

我应该使用:

onehotencoder = OneHotEncoder(categorical_features = [0, 1, 2, 3, 4, 5, 6])
X = onehotencoder.fit_transform(X).toarray() 

哪个给我:

X
array([[0., 0., 1., ..., 0., 0., 0.],
       [0., 0., 1., ..., 0., 0., 0.],
       [0., 0., 1., ..., 0., 0., 0.],
       ...,
       [0., 0., 1., ..., 1., 0., 0.],
       [0., 0., 1., ..., 0., 0., 0.],
       [0., 0., 1., ..., 1., 0., 0.]])

还是有更好的方法来解决这个问题?

2 个答案:

答案 0 :(得分:1)

您也可以尝试: X = pd.get_dummies(X,columns = [0,1,2,3,4,5,6],drop_first = True)

'drop_first = True'将您从虚拟变量陷阱中救出来。

答案 1 :(得分:0)

这是我能找到和工作的最好的东西:

onehotencoder = OneHotEncoder(categorical_features = [0,1,2,3,4,5,6])
X = onehotencoder.fit_transform(X).toarray()