针对顺序数据的LSTM,预测离散列

时间:2018-08-07 12:27:32

标签: tensorflow keras deep-learning classification lstm

我是ML的新手,只是摸摸它的表面,所以如果我的问题没有道理,我深表歉意。

我对某个对象进行了一系列连续测量(捕获其重量,大小,温度等),并确定了对象的属性的离散列(整数的有限范围,例如0,1,2)。这是我要预测的专栏。

所讨论的数据确实是一个序列,因为属性列的值可能会根据其周围的上下文而变化,并且序列本身也可能具有某些循环特性。简而言之:数据的顺序对我很重要。

下表是一个小例子

请注意,有两行包含相等的数据,但在“属性”字段中具有不同的值。这个想法是,属性字段的值可能取决于先前的行,因此行的顺序很重要。

我的问题是,我应该使用哪种方法/工具/技术来解决此问题?

我知道分类算法,但是考虑到所讨论的数据是顺序数据,并且我不想忽略此属性,因此我不认为它们在这里不适用。

我尝试使用Keras LSTM并假装“属性”列也是连续的。但是,我以此方式获得的预测通常只是一个恒定的十进制值,在这种情况下毫无意义。

解决这类问题的最佳方法是什么?

1 个答案:

答案 0 :(得分:2)

import tensorflow as tf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler

df = pd.DataFrame({'Temperature': [183, 10.7, 24.3, 10.7],
                   'Weight': [8, 11.2, 14, 11.2],
                   'Size': [3.97, 7.88, 11, 7.88],
                   'Property': [0,1,2,0]})

# print first 5 rows
df.head()

# adjust target(t) to depend on input (t-1)
df.Property = df.Property.shift(-1)

# parameters
time_steps = 1
inputs = 3
outputs = 1

# remove nans as a result of the shifted values
df = df.iloc[:-1,:]

# convert to numoy
df = df.values

数据预处理

# center and scale
scaler = MinMaxScaler(feature_range=(0, 1))    
df = scaler.fit_transform(df)

# X_y_split
train_X = df[:, 1:]
train_y = df[:, 0]

# reshape input to 3D array
train_X = train_X[:,None,:]

# reshape output to 1D array
train_y = np.reshape(train_y, (-1,outputs))

模型参数

learning_rate = 0.001
epochs = 500
batch_size = int(train_X.shape[0]/2)
length = train_X.shape[0]
display = 100
neurons = 100

# clear graph (if any) before running
tf.reset_default_graph()

X = tf.placeholder(tf.float32, [None, time_steps, inputs])
y = tf.placeholder(tf.float32, [None, outputs])

# LSTM Cell
cell = tf.contrib.rnn.BasicLSTMCell(num_units=neurons, activation=tf.nn.relu)
cell_outputs, states = tf.nn.dynamic_rnn(cell, X, dtype=tf.float32)

# pass into Dense layer
stacked_outputs = tf.reshape(cell_outputs, [-1, neurons])
out = tf.layers.dense(inputs=stacked_outputs, units=outputs)

# squared error loss or cost function for linear regression
loss = tf.losses.mean_squared_error(labels=y, predictions=out)
# optimizer to minimize cost
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(loss)

在会话中执行

with tf.Session() as sess:
    # initialize all variables
    tf.global_variables_initializer().run()

    # Train the model
    for steps in range(epochs):
        mini_batch = zip(range(0, length, batch_size),
                   range(batch_size, length+1, batch_size))

        # train data in mini-batches
        for (start, end) in mini_batch:
            sess.run(training_op, feed_dict = {X: train_X[start:end,:,:],
                                               y: train_y[start:end,:]})

        # print training performance 
        if (steps+1) % display == 0:
            # evaluate loss function on training set
            loss_fn = loss.eval(feed_dict = {X: train_X, y: train_y})
            print('Step: {}  \tTraining loss (mse): {}'.format((steps+1), loss_fn))

    # Test model
    y_pred = sess.run(out, feed_dict={X: train_X})

    plt.title("LSTM RNN Model", fontsize=12)
    plt.plot(train_y, "b--", markersize=10, label="targets")
    plt.plot(y_pred, "k--", markersize=10, label=" prediction")
    plt.legend()
    plt.xlabel("Period")

'Output':
Step: 100       Training loss (mse): 0.15871836245059967
Step: 200       Training loss (mse): 0.03062588907778263
Step: 300       Training loss (mse): 0.0003023963945452124
Step: 400       Training loss (mse): 1.7712079625198385e-07
Step: 500       Training loss (mse): 8.750407516633363e-12

LSTM Model Prediction

假设

  • 我假设目标Property是1个时间步长后输入序列的输出。
  • 如果不是这种情况,则可以轻松地重塑数据输入/输出的顺序格式,以更正确地适应问题用例。我认为这里的总体思路是展示如何使用张量流解决多元时间序列预测序列问题。

更新:分类变体

下面的代码将用例建模为分类问题,其中RNN算法尝试预测特定输入序列的类成员。

我再次假设目标(t), depends on the input sequence t-1`。

import tensorflow as tf
import pandas as pd
from sklearn.preprocessing import MinMaxScaler, OneHotEncoder

df = pd.DataFrame({'Temperature': [183, 10.7, 24.3, 10.7],
                   'Weight': [8, 11.2, 14, 11.2],
                   'Size': [3.97, 7.88, 11, 7.88],
                   'Property': [0,1,2,0]})

# print first 5 rows
df.head()

# adjust target(t) to depend on input (t-1)
df.Property = df.Property.shift(-1)

# parameters
time_steps = 1
inputs = 3
outputs = 3

# remove nans as a result of the shifted values
df = df.iloc[:-1,:]

# convert to numpy
df = df.values

数据预处理

# X_y_split
train_X = df[:, 1:]
train_y = df[:, 0]

# center and scale
scaler = MinMaxScaler(feature_range=(0, 1))    
train_X = scaler.fit_transform(train_X)

# reshape input to 3D array
train_X = train_X[:,None,:]

# one-hot encode the outputs
onehot_encoder = OneHotEncoder()
encode_categorical = train_y.reshape(len(train_y), 1)
train_y = onehot_encoder.fit_transform(encode_categorical).toarray()

模型参数

learning_rate = 0.001
epochs = 500
batch_size = int(train_X.shape[0]/2)
length = train_X.shape[0]
display = 100
neurons = 100

# clear graph (if any) before running
tf.reset_default_graph()

X = tf.placeholder(tf.float32, [None, time_steps, inputs])
y = tf.placeholder(tf.float32, [None, outputs])

# LSTM Cell
cell = tf.contrib.rnn.BasicLSTMCell(num_units=neurons, activation=tf.nn.relu)
cell_outputs, states = tf.nn.dynamic_rnn(cell, X, dtype=tf.float32)

# pass into Dense layer
stacked_outputs = tf.reshape(cell_outputs, [-1, neurons])
out = tf.layers.dense(inputs=stacked_outputs, units=outputs)

# squared error loss or cost function for linear regression
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(
        labels=y, logits=out))

# optimizer to minimize cost
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(loss)

定义分类评估指标

accuracy = tf.metrics.accuracy(labels =  tf.argmax(y, 1),
                          predictions = tf.argmax(out, 1),
                          name = "accuracy")
precision = tf.metrics.precision(labels=tf.argmax(y, 1),
                                 predictions=tf.argmax(out, 1),
                                 name="precision")
recall = tf.metrics.recall(labels=tf.argmax(y, 1),
                           predictions=tf.argmax(out, 1),
                           name="recall")
f1 = 2 * accuracy[1] * recall[1] / ( precision[1] + recall[1] )

在会话中执行

with tf.Session() as sess:
    # initialize all variables
    tf.global_variables_initializer().run()
    tf.local_variables_initializer().run()

    # Train the model
    for steps in range(epochs):
        mini_batch = zip(range(0, length, batch_size),
                   range(batch_size, length+1, batch_size))

        # train data in mini-batches
        for (start, end) in mini_batch:
            sess.run(training_op, feed_dict = {X: train_X[start:end,:,:],
                                               y: train_y[start:end,:]})

        # print training performance 
        if (steps+1) % display == 0:
            # evaluate loss function on training set
            loss_fn = loss.eval(feed_dict = {X: train_X, y: train_y})
            print('Step: {}  \tTraining loss: {}'.format((steps+1), loss_fn))

    # evaluate model accuracy
    acc, prec, recall, f1 = sess.run([accuracy, precision, recall, f1],
                                     feed_dict = {X: train_X, y: train_y})

    print('\nEvaluation  on training set')
    print('Accuracy:', acc[1])
    print('Precision:', prec[1])
    print('Recall:', recall[1])
    print('F1 score:', f1)

“输出”:

Step: 100       Training loss: 0.5373622179031372
Step: 200       Training loss: 0.33380019664764404
Step: 300       Training loss: 0.176949605345726
Step: 400       Training loss: 0.0781424418091774
Step: 500       Training loss: 0.0373661033809185

Evaluation  on training set
Accuracy: 1.0
Precision: 1.0
Recall: 1.0
F1 score: 1.0