我是ML的新手,只是摸摸它的表面,所以如果我的问题没有道理,我深表歉意。
我对某个对象进行了一系列连续测量(捕获其重量,大小,温度等),并确定了对象的属性的离散列(整数的有限范围,例如0,1,2)。这是我要预测的专栏。
所讨论的数据确实是一个序列,因为属性列的值可能会根据其周围的上下文而变化,并且序列本身也可能具有某些循环特性。简而言之:数据的顺序对我很重要。
下表是一个小例子
请注意,有两行包含相等的数据,但在“属性”字段中具有不同的值。这个想法是,属性字段的值可能取决于先前的行,因此行的顺序很重要。
我的问题是,我应该使用哪种方法/工具/技术来解决此问题?
我知道分类算法,但是考虑到所讨论的数据是顺序数据,并且我不想忽略此属性,因此我不认为它们在这里不适用。
我尝试使用Keras LSTM并假装“属性”列也是连续的。但是,我以此方式获得的预测通常只是一个恒定的十进制值,在这种情况下毫无意义。
解决这类问题的最佳方法是什么?
答案 0 :(得分:2)
import tensorflow as tf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
df = pd.DataFrame({'Temperature': [183, 10.7, 24.3, 10.7],
'Weight': [8, 11.2, 14, 11.2],
'Size': [3.97, 7.88, 11, 7.88],
'Property': [0,1,2,0]})
# print first 5 rows
df.head()
# adjust target(t) to depend on input (t-1)
df.Property = df.Property.shift(-1)
# parameters
time_steps = 1
inputs = 3
outputs = 1
# remove nans as a result of the shifted values
df = df.iloc[:-1,:]
# convert to numoy
df = df.values
# center and scale
scaler = MinMaxScaler(feature_range=(0, 1))
df = scaler.fit_transform(df)
# X_y_split
train_X = df[:, 1:]
train_y = df[:, 0]
# reshape input to 3D array
train_X = train_X[:,None,:]
# reshape output to 1D array
train_y = np.reshape(train_y, (-1,outputs))
learning_rate = 0.001
epochs = 500
batch_size = int(train_X.shape[0]/2)
length = train_X.shape[0]
display = 100
neurons = 100
# clear graph (if any) before running
tf.reset_default_graph()
X = tf.placeholder(tf.float32, [None, time_steps, inputs])
y = tf.placeholder(tf.float32, [None, outputs])
# LSTM Cell
cell = tf.contrib.rnn.BasicLSTMCell(num_units=neurons, activation=tf.nn.relu)
cell_outputs, states = tf.nn.dynamic_rnn(cell, X, dtype=tf.float32)
# pass into Dense layer
stacked_outputs = tf.reshape(cell_outputs, [-1, neurons])
out = tf.layers.dense(inputs=stacked_outputs, units=outputs)
# squared error loss or cost function for linear regression
loss = tf.losses.mean_squared_error(labels=y, predictions=out)
# optimizer to minimize cost
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(loss)
with tf.Session() as sess:
# initialize all variables
tf.global_variables_initializer().run()
# Train the model
for steps in range(epochs):
mini_batch = zip(range(0, length, batch_size),
range(batch_size, length+1, batch_size))
# train data in mini-batches
for (start, end) in mini_batch:
sess.run(training_op, feed_dict = {X: train_X[start:end,:,:],
y: train_y[start:end,:]})
# print training performance
if (steps+1) % display == 0:
# evaluate loss function on training set
loss_fn = loss.eval(feed_dict = {X: train_X, y: train_y})
print('Step: {} \tTraining loss (mse): {}'.format((steps+1), loss_fn))
# Test model
y_pred = sess.run(out, feed_dict={X: train_X})
plt.title("LSTM RNN Model", fontsize=12)
plt.plot(train_y, "b--", markersize=10, label="targets")
plt.plot(y_pred, "k--", markersize=10, label=" prediction")
plt.legend()
plt.xlabel("Period")
'Output':
Step: 100 Training loss (mse): 0.15871836245059967
Step: 200 Training loss (mse): 0.03062588907778263
Step: 300 Training loss (mse): 0.0003023963945452124
Step: 400 Training loss (mse): 1.7712079625198385e-07
Step: 500 Training loss (mse): 8.750407516633363e-12
假设
Property
是1个时间步长后输入序列的输出。下面的代码将用例建模为分类问题,其中RNN算法尝试预测特定输入序列的类成员。
我再次假设目标(t), depends on the input sequence
t-1`。
import tensorflow as tf
import pandas as pd
from sklearn.preprocessing import MinMaxScaler, OneHotEncoder
df = pd.DataFrame({'Temperature': [183, 10.7, 24.3, 10.7],
'Weight': [8, 11.2, 14, 11.2],
'Size': [3.97, 7.88, 11, 7.88],
'Property': [0,1,2,0]})
# print first 5 rows
df.head()
# adjust target(t) to depend on input (t-1)
df.Property = df.Property.shift(-1)
# parameters
time_steps = 1
inputs = 3
outputs = 3
# remove nans as a result of the shifted values
df = df.iloc[:-1,:]
# convert to numpy
df = df.values
# X_y_split
train_X = df[:, 1:]
train_y = df[:, 0]
# center and scale
scaler = MinMaxScaler(feature_range=(0, 1))
train_X = scaler.fit_transform(train_X)
# reshape input to 3D array
train_X = train_X[:,None,:]
# one-hot encode the outputs
onehot_encoder = OneHotEncoder()
encode_categorical = train_y.reshape(len(train_y), 1)
train_y = onehot_encoder.fit_transform(encode_categorical).toarray()
learning_rate = 0.001
epochs = 500
batch_size = int(train_X.shape[0]/2)
length = train_X.shape[0]
display = 100
neurons = 100
# clear graph (if any) before running
tf.reset_default_graph()
X = tf.placeholder(tf.float32, [None, time_steps, inputs])
y = tf.placeholder(tf.float32, [None, outputs])
# LSTM Cell
cell = tf.contrib.rnn.BasicLSTMCell(num_units=neurons, activation=tf.nn.relu)
cell_outputs, states = tf.nn.dynamic_rnn(cell, X, dtype=tf.float32)
# pass into Dense layer
stacked_outputs = tf.reshape(cell_outputs, [-1, neurons])
out = tf.layers.dense(inputs=stacked_outputs, units=outputs)
# squared error loss or cost function for linear regression
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(
labels=y, logits=out))
# optimizer to minimize cost
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(loss)
accuracy = tf.metrics.accuracy(labels = tf.argmax(y, 1),
predictions = tf.argmax(out, 1),
name = "accuracy")
precision = tf.metrics.precision(labels=tf.argmax(y, 1),
predictions=tf.argmax(out, 1),
name="precision")
recall = tf.metrics.recall(labels=tf.argmax(y, 1),
predictions=tf.argmax(out, 1),
name="recall")
f1 = 2 * accuracy[1] * recall[1] / ( precision[1] + recall[1] )
with tf.Session() as sess:
# initialize all variables
tf.global_variables_initializer().run()
tf.local_variables_initializer().run()
# Train the model
for steps in range(epochs):
mini_batch = zip(range(0, length, batch_size),
range(batch_size, length+1, batch_size))
# train data in mini-batches
for (start, end) in mini_batch:
sess.run(training_op, feed_dict = {X: train_X[start:end,:,:],
y: train_y[start:end,:]})
# print training performance
if (steps+1) % display == 0:
# evaluate loss function on training set
loss_fn = loss.eval(feed_dict = {X: train_X, y: train_y})
print('Step: {} \tTraining loss: {}'.format((steps+1), loss_fn))
# evaluate model accuracy
acc, prec, recall, f1 = sess.run([accuracy, precision, recall, f1],
feed_dict = {X: train_X, y: train_y})
print('\nEvaluation on training set')
print('Accuracy:', acc[1])
print('Precision:', prec[1])
print('Recall:', recall[1])
print('F1 score:', f1)
Step: 100 Training loss: 0.5373622179031372
Step: 200 Training loss: 0.33380019664764404
Step: 300 Training loss: 0.176949605345726
Step: 400 Training loss: 0.0781424418091774
Step: 500 Training loss: 0.0373661033809185
Evaluation on training set
Accuracy: 1.0
Precision: 1.0
Recall: 1.0
F1 score: 1.0