问题陈述:
给出一个数组,任务是将其分为两组S1和S2,以使它们的和之间的绝对差最小。
示例输入,
[1,6,5,11]
=> 1
。这两个子集为{1,5,6}
和{11}
,总和为12
和11
。因此答案是1
。
[36,7,46,40]
=> 23
。这两个子集为{7,46}
和{36,40}
,总和为53
和76
。因此答案是23
。
约束
1 <=数组大小<= 50
1 <= a [i] <= 50
我的努力:
int someFunction(int n, int *arr) {
qsort(arr, n, sizeof(int), compare);// sorted it for simplicity
int i, j;
int dp[55][3000]; // sum of the array won't go beyond 3000 and size of array is less than or equal to 50(for the rows)
// initialize
for (i = 0; i < 55; ++i) {
for (j = 0; j < 3000; ++j)
dp[i][j] = 0;
}
int sum = 0;
for (i = 0; i < n; ++i)
sum += arr[i];
for (i = 0; i < n; ++i) {
for (j = 0; j <= sum; ++j) {
dp[i + 1][j + 1] = max(dp[i + 1][j], dp[i][j + 1]);
if (j >= arr[i])
dp[i + 1][j + 1] = max(dp[i + 1][j + 1], arr[i] + dp[i][j + 1 - arr[i]]);
}
}
for (i = 0; i < n; ++i) {
for (j = 0; j <= sum; ++j)
printf("%d ", dp[i + 1][j + 1]);
printf("\n");
}
return 0;// irrelevant for now as I am yet to understand what to do next to get the minimum.
}
输出
比方说输入[1,5,6,11]
,我得到的dp
数组输出如下。
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
0 1 1 1 1 5 6 7 7 7 7 11 12 12 12 12 12 12 12 12 12 12 12 12
0 1 1 1 1 5 6 7 7 7 7 11 12 12 12 12 16 17 18 18 18 18 22 23
现在,如何决定两个子集以获得最小值?
PS-我已经看过这个link,但对于像我这样的DP初学者来说,解释还不够好。
答案 0 :(得分:4)
您必须为subset sum
解决SumValue = OverallSum / 2
问题
请注意,您无需解决任何优化问题(如在代码中使用max
操作所示)。
仅用可能的和填充大小为(SumValue + 1)的线性表(1D数组A
),获得最接近最后一个像元的非零结果(向后扫描A)wint索引M
并将最终结果计算为abs(OverallSum - M - M)
。
首先,将第0个条目设置为1。
然后从头到尾对每个源数组项D[i]
扫描数组A
:
A[0] = 1;
for (i = 0; i < D.Length(); i++)
{
for (j = SumValue; j >= D[i]; j--)
{
if (A[j - D[i]] == 1)
// we can compose sum j from D[i] and previously made sum
A[j] = 1;
}
}
例如,D = [1,6,5,11]
您拥有SumValue = 12
,建立数组A[13]
,并计算可能的总和
A array after filling: [0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1]
有效的Python代码:
def besthalf(d):
s = sum(d)
half = s // 2
a = [1] + [0] * half
for v in d:
for j in range(half, v - 1, -1):
if (a[j -v] == 1):
a[j] = 1
for j in range(half, 0, -1):
if (a[j] == 1):
m = j
break
return(s - 2 * m)
print(besthalf([1,5,6,11]))
print(besthalf([1,1,1,50]))
>>1
>>47
答案 1 :(得分:1)
RestAssuredConfig config = RestAssuredConfig.config();
config = config.encoderConfig(
config.getEncoderConfig().defaultContentCharset("UTF-8")
.defaultCharsetForContentType("UTF-8", "application/json"));
config = config.decoderConfig(
config.getDecoderConfig().defaultContentCharset("UTF-8")
.defaultCharsetForContentType("UTF-8", "application/json"));
相同的Java代码
I'll convert this problem to subset sum problem
let's take array int[] A = { 10,20,15,5,25,33 };
it should be divided into {25 20 10} and { 33 20 } and answer is 55-53=2
Notations : SUM == sum of whole array
sum1 == sum of subset1
sum2 == sum of subset1
step 1: get sum of whole array SUM=108
step 2: whichever way we divide our array into two part one thing will remain true
sum1+ sum2= SUM
step 3: if our intention is to get minimum sum difference then
sum1 and sum2 should be near SUM/2 (example sum1=54 and sum2=54 then diff=0 )
steon 4: let's try combinations
sum1 = 54 AND sum2 = 54 (not possible to divide like this)
sum1 = 55 AND sum2 = 53 (possible and our solution, should break here)
sum1 = 56 AND sum2 = 52
sum1 = 57 AND sum2 = 51 .......so on
pseudo code
SUM=Array.sum();
sum1 = SUM/2;
sum2 = SUM-sum1;
while(true){
if(subSetSuMProblem(A,sum1) && subSetSuMProblem(A,sum2){
print "possible"
break;
}
else{
sum1++;
sum2--;
}
}
答案 2 :(得分:0)
正在工作的C代码(如果有人感兴趣,但想法与@MBo所说的相同)
int someFunction(int n,int *arr)
{
qsort (arr, n, sizeof(int), compare);
int i,j;
int dp[3000];
for(j=0;j<3000;++j) dp[j] = 0;
int sum = 0;
for(i=0;i<n;++i) sum += arr[i];
int sum2 = sum;
if((sum&1) == 1) sum = sum/2+1;
else sum = sum/2;
dp[0] = 1;
for(i=0;i<n;++i){
for(j=sum;j>=arr[i];--j){
if(dp[j-arr[i]] == 1){
dp[j] = 1;
}
}
}
for(i=sum;i>=1;--i){
if(dp[i] == 1){
return abs(sum2 - 2 * i);
}
}
return 0;
}