这是我的df样本:
structure(list(press_id = c(1L, 1L, 2L, 2L, 3L, 3L, 4L, 4L),
start_time = c(164429106370978, 164429106370978, 164429411618824,
164429411618824, 164429837271939, 164429837271939, 164430399454284,
164430399454284), end_time = c(164429182443824, 164429182443824,
164429512525747, 164429512525747, 164429903243169, 164429903243169,
164430465927554, 164430465927554), timestamp = c(164429140697138,
164429175921880, 164429440899844, 164429440899844, 164429867184830,
164429891199391, 164430427558256, 164430433561155), acc_x = c(3.1053743,
2.9904492, 5.889916, 5.889916, 5.808511, 5.36557, 3.545921,
3.4788814), acc_y = c(8.406299, 8.12138, 8.600235, 8.600235,
7.920261, 7.922655, 7.9346266, 7.972935), acc_z = c(4.577853,
4.0894213, 0.35435268, 0.35435268, -0.21309046, 0.46927786,
4.005622, 4.4198313), grav_x = c(3.931084, 4.0214577, 4.7844357,
4.7844357, 5.6572776, 5.65053, 3.9938855, 3.9938855), grav_y = c(8.318872,
8.281514, 8.21449, 8.21449, 7.94851, 7.9495893, 8.027369,
8.027369), grav_z = c(3.393116, 3.3785365, 2.408623, 2.408623,
0.99327636, 1.0226398, 3.9724596, 3.9724596), gyro_x = c(-0.35906965,
0.099690154, 0.06792516, 0.04532315, -0.05546962, -0.06524346,
-0.2967614, -0.32180685), gyro_y = c(0.15843217, -0.48053285,
-0.2196934, -0.21175216, 0.1895863, 0.37467846, 0.12239113,
0.04847643), gyro_z = c(-0.042139318, 0.39585108, 0.12523776,
0.11240959, -0.05863268, 0.042770952, 0.047047008, 0.097137965
), acc_mag = c(10.0630984547559, 9.5719886173707, 10.4297995361418,
10.4297995361418, 9.82419166595324, 9.58008483176486, 9.56958006531909,
9.75731607717771), acc_mag_max = c(10.4656808698978, 10.4656808698978,
10.5978974240054, 10.5978974240054, 10.2717799984467, 10.2717799984467,
10.0054693945119, 10.0054693945119), acc_mag_min = c(9.55048847884876,
9.55048847884876, 9.45791784630329, 9.45791784630329, 9.58008483176486,
9.58008483176486, 9.49389444102469, 9.49389444102469), acc_mag_avg = c(9.9181794947982,
9.9181794947982, 9.82876220923978, 9.82876220923978, 9.89351246166363,
9.89351246166363, 9.77034322149792, 9.77034322149792), vel_ang_mag = c(0.394724572535758,
0.630514095219792, 0.261846355511019, 0.243985821544114,
0.206052505577139, 0.382714007838398, 0.324438496782347,
0.339625377757329), vel_ang_mag_max = c(0.665292823798622,
0.665292823798622, 1.00730683166191, 1.00730683166191, 0.561349818527019,
0.561349818527019, 0.445252333070234, 0.445252333070234),
vel_ang_mag_min = c(0.212944405199931, 0.212944405199931,
0.18680382123856, 0.18680382123856, 0.111795327479332, 0.111795327479332,
0.258342546774667, 0.258342546774667), vel_ang_mag_avg = c(0.440700089033948,
0.440700089033948, 0.405484992593493, 0.405484992593493,
0.284553957549617, 0.284553957549617, 0.348811700631375,
0.348811700631375)), .Names = c("press_id", "start_time",
"end_time", "timestamp", "acc_x", "acc_y", "acc_z", "grav_x",
"grav_y", "grav_z", "gyro_x", "gyro_y", "gyro_z", "acc_mag",
"acc_mag_max", "acc_mag_min", "acc_mag_avg", "vel_ang_mag", "vel_ang_mag_max",
"vel_ang_mag_min", "vel_ang_mag_avg"), row.names = c(NA, -8L), class = c("grouped_df",
"tbl_df", "tbl", "data.frame"), vars = "press_id", drop = TRUE, indices = list(
0:1, 2:3, 4:5, 6:7), group_sizes = c(2L, 2L, 2L, 2L), biggest_group_size = 2L, labels = structure(list(
press_id = 1:4), row.names = c(NA, -4L), class = "data.frame", vars = "press_id", drop = TRUE, indices = list(
0:1, 2:3, 4:5, 6:7), group_sizes = c(2L, 2L, 2L, 2L), biggest_group_size = 2L, labels = structure(list(
press_id = 1:4), row.names = c(NA, -4L), class = "data.frame", vars = "press_id", drop = TRUE, .Names = "press_id"), .Names = "press_id"))
我试图通过以下方式对其进行总结,其中最后一列(空白处填充有来自上述数据框的适当值):
press_id time_state time_state_val acc_mag acc_mag_max acc_mag_min acc_mag_avg vel_ang_mag vel_ang_mag_max vel_ang_mag_min vel_ang_mag_avg
1 start_time 164429106370978
1 end_time 164429182443824
2 start_time 164429411618824
2 end_time 164429512525747
3 start_time 164429837271939
3 end_time 164429903243169
4 start_time 164430399454284
4 end_time 164430427558256
请告知如何将其转换为预期结果。
我正在尝试结合使用tidyr
gather
和dplyr
来做到这一点,但我没有得到所需的结构。
答案 0 :(得分:1)
library(dplyr)
library(tidyr)
df1 <- df[,1:6]
df1 %>% mutate(row=row_number()) %>%
gather(time_state , time_state_val, -press_id, -row,-timestamp:-acc_y) %>%
arrange(press_id, row) %>%
select(press_id, time_state, time_state_val, everything(),-row)