检查重叠间隔的开始和结束时间

时间:2016-09-28 23:19:16

标签: r dplyr

我有这个数据框按END TIME排序:

A    B    C           D                  E
                 ---------------       ----------
                  D1    D2     D3      E1  E2  E3
              ------- ------- -------
               F    G  H   I   J   K

每行是具有开始时间和结束时间的时间间隔

 df = data.frame(ID= c(1,1,1,1,1,1,1),   NumberInSequence= c(1,2,3,4,5,6,7), 
                 StartTime = as.POSIXct(c("2016-01-15 18:02:11 GMT","2016-01-15 18:10:33 GMT","2016-01-15 18:25:08 GMT",
                                               "2016-01-15 18:33:56 GMT","2016-01-15 18:21:03 GMT","2016-01-15 19:55:09 GMT","2016-01-15 19:57:03 GMT"))  ,
                        EndTime = as.POSIXct(c("2016-01-15 18:02:17 GMT","2016-01-15 18:10:39 GMT","2016-01-15 18:25:14 GMT",
                                               "2016-01-15 18:34:02 GMT","2016-01-15 19:53:17 GMT","2016-01-15 19:56:15 GMT","2016-01-15 19:58:17 GMT"))
                       )

然后我使用dplyr添加几个字段来计算下一个开始时间和等待时间,这是NextStartTime和EndTime之间的差异。这创造了" WaitTime"在大多数情况下工作的列,除非有多个重叠。

df

 ID NumberInSequence           StartTime             EndTime
1  1                1 2016-01-15 18:02:11 2016-01-15 18:02:17
2  1                2 2016-01-15 18:10:33 2016-01-15 18:10:39
3  1                3 2016-01-15 18:25:08 2016-01-15 18:25:14
4  1                4 2016-01-15 18:33:56 2016-01-15 18:34:02
5  1                5 2016-01-15 18:21:03 2016-01-15 19:53:17
6  1                6 2016-01-15 19:55:09 2016-01-15 19:56:15
7  1                7 2016-01-15 19:57:03 2016-01-15 19:58:17

现在我需要添加一个名为" FLAG"的列。值得好或不好

"确定" 表示间隔不是在另一个间隔内也不是或者部分。因此间隔为" OK"与其他间隔没有重叠。

" Not OK" 表示间隔IS部分或完全与另一个间隔。所以间隔时间为" NOT OK"与其他间隔重叠。

我有以下间隔,FLAG列的结果应该是简短描述

   df %>% group_by(ID) %>% 
      mutate(
      NextStartTime = lead(StartTime)[ifelse(lead(NumberInSequence) == (NumberInSequence + 1), TRUE, NA)] ,
      WaitTime = difftime(NextStartTime,EndTime, units = 's')
      #max_s = max(StartTime) #,
     # cum_max_s = as.POSIXct(cummin(as.numeric(StartTime)),origin="1970-01-01")
      )


  ID NumberInSequence           StartTime             EndTime       NextStartTime  WaitTime
1  1                1 2016-01-15 18:02:11 2016-01-15 18:02:17 2016-01-15 18:10:33  496 secs
2  1                2 2016-01-15 18:10:33 2016-01-15 18:10:39 2016-01-15 18:25:08  869 secs
3  1                3 2016-01-15 18:25:08 2016-01-15 18:25:14 2016-01-15 18:33:56  522 secs
4  1                4 2016-01-15 18:33:56 2016-01-15 18:34:02 2016-01-15 18:21:03 -779 secs
5  1                5 2016-01-15 18:21:03 2016-01-15 19:53:17 2016-01-15 19:55:09  112 secs
6  1                6 2016-01-15 19:55:09 2016-01-15 19:56:15 2016-01-15 19:57:03   48 secs
7  1                7 2016-01-15 19:57:03 2016-01-15 19:58:17                <NA>   NA secs

我正在考虑在dplyr中使用cummin或cummax ......也许......

 StartTime             EndTime              FLAG
2016-01-15 18:02:11 2016-01-15 18:02:17     OK - this interval does not overlap with other intervals
2016-01-15 18:10:33 2016-01-15 18:10:39     OK - this interval does not overlap with other intervals
2016-01-15 18:25:08 2016-01-15 18:25:14     NOT OK - this inerval is within the  18:21:03 start time interval 
2016-01-15 18:33:56 2016-01-15 18:34:02     NOT OK - this inerval is within the  18:21:03 start time interval 
2016-01-15 18:21:03 2016-01-15 19:53:17     NOT OK  - this interval contains other intervals 
2016-01-15 19:55:09 2016-01-15 19:56:15     OK - this interval does not overlap with other intervals
2016-01-15 19:57:03 2016-01-15 19:58:17     OK - this interval does not overlap with other intervals

1 个答案:

答案 0 :(得分:2)

这是我对你的尝试。我认为data.table包中的foverlaps()是我们这种情况的朋友。你可以在SO上找到一些例子。您想要检查它们以了解功能。您需要创建一个虚拟data.table,包括开始和结束时间。在你的情况下,你有它们。我用最少的信息创建了dummy。然后,您使用setkey()并使用foverlaps()

# Create a dummy dt for hoverlaps.
dummy <- setDT(df2)[, 1:4, with = FALSE]

# Use foverlaps().
setkey(setDT(df2), StartTime, EndTime)
foo <- foverlaps(dummy, setDT(df2), by.x = c("StartTime", "EndTime"))

现在,是时候清理数据了。对于每个NumberInSequence,如果存在多于1个重叠间隔(n> 1),则删除具有相同开始和结束时间(StartTime == i.StartTime & EndTime == i.EndTime)的行。然后,删除每个NumberInSequence的重复行。如果你只有一行表示与另一个间隔重叠,那就够了,对吧?最后,如果StartTime == i.StartTime & EndTime == i.EndTimeTRUE,则表示没有其他间隔与间隔重叠。所以,你说OK。否则,NOT OK。如有必要,请稍后删除多余的列。

foo[,.SD[!(StartTime == i.StartTime & EndTime == i.EndTime & .N > 1)],
        by = c("ID","NumberInSequence")][!duplicated(NumberInSequence)][,
            check := ifelse(StartTime == i.StartTime & EndTime == i.EndTime,
                            "OK", "NOT OK")] -> out     
print(out)

#   ID NumberInSequence           StartTime             EndTime       NextStartTime  WaitTime i.ID i.NumberInSequence
#1:  1                1 2016-01-15 18:02:11 2016-01-15 18:02:17 2016-01-15 18:10:33  496 secs    1                  1
#2:  1                2 2016-01-15 18:10:33 2016-01-15 18:10:39 2016-01-15 18:25:08  869 secs    1                  2
#3:  1                5 2016-01-15 18:21:03 2016-01-15 19:53:17 2016-01-15 19:55:09  112 secs    1                  3
#4:  1                3 2016-01-15 18:25:08 2016-01-15 18:25:14 2016-01-15 18:33:56  522 secs    1                  5
#5:  1                4 2016-01-15 18:33:56 2016-01-15 18:34:02 2016-01-15 18:21:03 -779 secs    1                  5
#6:  1                6 2016-01-15 19:55:09 2016-01-15 19:56:15 2016-01-15 19:57:03   48 secs    1                  6
#7:  1                7 2016-01-15 19:57:03 2016-01-15 19:58:17                <NA>   NA secs    1                  7

#           i.StartTime           i.EndTime  check
#1: 2016-01-15 18:02:11 2016-01-15 18:02:17     OK
#2: 2016-01-15 18:10:33 2016-01-15 18:10:39     OK
#3: 2016-01-15 18:25:08 2016-01-15 18:25:14 NOT OK
#4: 2016-01-15 18:21:03 2016-01-15 19:53:17 NOT OK
#5: 2016-01-15 18:21:03 2016-01-15 19:53:17 NOT OK
#6: 2016-01-15 19:55:09 2016-01-15 19:56:15     OK
#7: 2016-01-15 19:57:03 2016-01-15 19:58:17     OK