对于我的网,我需要从两帧立体相机输入4张图像。在加载过程中的某些地方,图像有时会在摄像机之间混洗,即self.right_image_batch中的图像实际上是self.image_left_next,反之亦然。
我该如何解决?
代码和信息:
filenames_file具有4个路径,每个路径之间用空格分隔,对应于:left right left_next right_next num_threads为1
db.eventPart.aggregate([
{ "$match": { "eventName": "Ebullienza" } },
{
"$lookup": {
"from": "Participants",
"localField": "rollNo",
"foreignField": "rollNo",
"as": "Participants"
}
}
])
read_image:
input_queue = tf.train.string_input_producer([filenames_file], shuffle=False)
line_reader = tf.TextLineReader()
_, line = line_reader.read(input_queue)
split_line = tf.string_split([line]).values
left_image_path = tf.string_join([self.data_path, split_line[0]],'/')
right_image_path = tf.string_join([self.data_path, split_line[1]],'/')
left_image_path_next = tf.string_join([self.data_path, split_line[2]],'/')
right_image_path_next = tf.string_join([self.data_path, split_line[3]],'/')
left_image = self.read_image(left_image_path)
left_image_next = self.read_image(left_image_path_next)
right_image = self.read_image(right_image_path)
right_image_next= self.read_image(right_image_path_next)
self.left_image_batch, self.left_image_batch_next, self.right_image_batch, self.right_image_batch_next = tf.train.shuffle_batch([left_image, left_image_next, right_image, right_image_next], params.batch_size, capacity, min_after_dequeue, params.num_threads)