一个模型的截距,该模型研究了三个类别的多层次预测变量之间的相互作用

时间:2018-08-01 16:55:44

标签: r categorical-data interaction mixed-models intercept

我已经构建了一个混合效应回归模型,以研究三个分类预测变量(S_condition,C_condition和E_condition)之间的相互作用,每个预测变量分别具有三个级别(S1,S2,S3,C1,C2,C3,E1,E2, E3)–预测连续的DV(信任)。按主题(也具有随机斜率)和声明有随机效应。

model3 <- lmer(trust ~ S_condition*C_condition*E_condition + (1+stance|subject) + (1|claim), data = dataC, REML=FALSE) 

此模型输出的固定效果如下。

                                            Estimate Std. Error         df t value Pr(>|t|)  
(Intercept)                                 -0.33582    0.38341  138.93163  -0.876   0.3826  
S_conditionS2                               -0.28344    0.47676 2683.40160  -0.595   0.5522  
S_conditionS3                               -0.46068    0.47957 2679.28922  -0.961   0.3368  
C_conditionC2                                0.25793    0.47493 2649.02712   0.543   0.5871  
C_conditionC3                                0.05433    0.47507 2649.41999   0.114   0.9090  
E_conditionE2                               -0.02748    0.47476 2648.58893  -0.058   0.9539  
E_conditionE3                                0.14434    0.47552 2650.55022   0.304   0.7615  
S_conditionS2:C_conditionC2                 -0.02042    0.66883 2649.93697  -0.031   0.9756  
S_conditionS3:C_conditionC2                  0.69522    0.67363 2649.56439   1.032   0.3021  
S_conditionS2:C_conditionC3                  0.85942    0.66985 2651.65264   1.283   0.1996  
S_conditionS3:C_conditionC3                  0.88873    0.67362 2649.55228   1.319   0.1872  
S_conditionS2:E_conditionE2                  0.08978    0.66830 2648.93336   0.134   0.8931  
S_conditionS3:E_conditionE2                  0.63116    0.67342 2649.17937   0.937   0.3487  
S_conditionS2:E_conditionE3                  0.72908    0.66942 2650.95145   1.089   0.2762  
S_conditionS3:E_conditionE3                  0.26589    0.67389 2650.04088   0.395   0.6932  
C_conditionC2:E_conditionE2                  0.47762    0.67135 2648.46205   0.711   0.4769  
C_conditionC3:E_conditionE2                  0.67541    0.67135 2648.44933   1.006   0.3145  
C_conditionC2:E_conditionE3                  0.02980    0.67182 2649.36016   0.044   0.9646  
C_conditionC3:E_conditionE3                  0.59804    0.67206 2649.80941   0.890   0.3736  
S_conditionS2:C_conditionC2:E_conditionE2   -0.05959    0.94493 2648.67938  -0.063   0.9497  
S_conditionS3:C_conditionC2:E_conditionE2   -1.61455    0.95237 2649.19981  -1.695   0.0901 .
S_conditionS2:C_conditionC3:E_conditionE2   -1.24787    0.94555 2649.51572  -1.320   0.1870  
S_conditionS3:C_conditionC3:E_conditionE2   -1.39477    0.95265 2649.55567  -1.464   0.1433  
S_conditionS2:C_conditionC2:E_conditionE3   -0.99598    0.94629 2650.45541  -1.053   0.2927  
S_conditionS3:C_conditionC2:E_conditionE3   -1.28928    0.95209 2648.81876  -1.354   0.1758  
S_conditionS2:C_conditionC3:E_conditionE3   -2.01203    0.94586 2649.91207  -2.127   0.0335 *
S_conditionS3:C_conditionC3:E_conditionE3   -1.70194    0.95235 2649.16702  -1.787   0.0740 .

我无法确定的是该模型中的截距。

是“ S_conditionS1”还是“ S_conditionS1:C_conditionC1:E_conditionE1”还是其他?

无论哪种方式,为什么每个预测变量的第一级都不会出现在输出中的其他任何地方? (例如,如果截距确实是“ S_conditionS1:C_conditionC1:E_conditionE1”,那么为什么输出中没有诸如“ S_conditionS1:C_conditionC2:E_conditionE2”之类的系数的行,等等??

0 个答案:

没有答案