具有三向联接的Spark结构化流水印

时间:2018-08-01 15:12:31

标签: scala apache-spark spark-structured-streaming

我有3个数据流:foobarbaz

有必要在以下链中将这些流与LEFT OUTER JOIN结合在一起:foo -> bar -> baz

这里尝试用内置的rate流来模仿这些流:

val rateStream = session.readStream
  .format("rate")
  .option("rowsPerSecond", 5)
  .option("numPartitions", 1)
  .load()

val fooStream = rateStream
  .select(col("value").as("fooId"), col("timestamp").as("fooTime"))

val barStream = rateStream
  .where(rand() < 0.5) // Introduce misses for ease of debugging
  .select(col("value").as("barId"), col("timestamp").as("barTime"))

val bazStream = rateStream
  .where(rand() < 0.5) // Introduce misses for ease of debugging
  .select(col("value").as("bazId"), col("timestamp").as("bazTime"))

这是将所有这些流连接在一起的第一种方法,并假设foobarbaz的潜在延迟很小(〜5 seconds):

val foobarStream = fooStream
  .withWatermark("fooTime", "5 seconds")
  .join(
    barStream.withWatermark("barTime", "5 seconds"),
    expr("""
       barId = fooId AND
       fooTime >= barTime AND
       fooTime <= barTime + interval 5 seconds
           """),
    joinType = "leftOuter"
  )

val foobarbazQuery = foobarStream
  .join(
    bazStream.withWatermark("bazTime", "5 seconds"),
    expr("""
      bazId = fooId AND
      bazTime >= fooTime AND
      bazTime <= fooTime + interval 5 seconds
         """),
    joinType = "leftOuter")
  .writeStream
  .format("console")
  .start()

通过上面的设置,我可以观察以下数据元组:

  • (some_foo, some_bar, some_baz)
  • (some_foo, some_bar, null)

但仍然缺少(some_foo, null, some_baz)(some_foo, null, null)

任何想法,如何正确配置水印以获取所有组合?

更新:

foobarStream上为barTime添加了额外的水印后:

val foobarbazQuery = foobarStream
  .withWatermark("barTime", "1 minute")
  .join(/* ... */)`

我可以使用此(some_foo, null, some_baz)组合,但仍然缺少(some_foo, null, null) ...

1 个答案:

答案 0 :(得分:1)

我留一些信息仅供参考。

因为流仅支持全局水印(而不是运算符级的水印),所以束缚流-流联接无法正常工作。

Apache Spark社区指出了这个问题,并在前面进行了讨论。以下是更多详细信息的链接: https://lists.apache.org/thread.html/cc6489a19316e7382661d305fabd8c21915e5faf6a928b4869ac2b4a@%3Cdev.spark.apache.org%3E

(免责声明:我是作者发起的邮件线程。)