我基本上使用Spark的documentation here中给出的示例,内置测试流,其中一个流提前3秒(最初使用kafka但遇到了同样的问题)。结果正确地返回了匹配列,但是一段时间后返回一个带有外部空值的相同键。
这是预期的行为吗?有没有办法在匹配时排除重复的外部空结果?
代码:
val testStream = session.readStream.format("rate")
.option("rowsPerSecond", "5").option("numPartitions", "1").load()
val impressions = testStream
.select(
(col("value") + 15).as("impressionAdId"),
col("timestamp").as("impressionTime"))
val clicks = testStream
.select(
col("value").as("clickAdId"),
col("timestamp").as("clickTime"))
// Apply watermarks on event-time columns
val impressionsWithWatermark =
impressions.withWatermark("impressionTime", "20 seconds")
val clicksWithWatermark =
clicks.withWatermark("clickTime", "30 seconds")
// Join with event-time constraints
val result = impressionsWithWatermark.join(
clicksWithWatermark,
expr("""
clickAdId = impressionAdId AND
clickTime >= impressionTime AND
clickTime <= impressionTime + interval 10 seconds
"""),
joinType = "leftOuter" // can be "inner", "leftOuter", "rightOuter"
)
val query = result.writeStream.outputMode("update").format("console").option("truncate", false).start()
query.awaitTermination()
结果:
-------------------------------------------
Batch: 19
-------------------------------------------
+--------------+-----------------------+---------+-----------------------+
|impressionAdId|impressionTime |clickAdId|clickTime |
+--------------+-----------------------+---------+-----------------------+
|100 |2018-05-23 22:18:38.362|100 |2018-05-23 22:18:41.362|
|101 |2018-05-23 22:18:38.562|101 |2018-05-23 22:18:41.562|
|102 |2018-05-23 22:18:38.762|102 |2018-05-23 22:18:41.762|
|103 |2018-05-23 22:18:38.962|103 |2018-05-23 22:18:41.962|
|104 |2018-05-23 22:18:39.162|104 |2018-05-23 22:18:42.162|
+--------------+-----------------------+---------+-----------------------+
-------------------------------------------
Batch: 57
-------------------------------------------
+--------------+-----------------------+---------+-----------------------+
|impressionAdId|impressionTime |clickAdId|clickTime |
+--------------+-----------------------+---------+-----------------------+
|290 |2018-05-23 22:19:16.362|290 |2018-05-23 22:19:19.362|
|291 |2018-05-23 22:19:16.562|291 |2018-05-23 22:19:19.562|
|292 |2018-05-23 22:19:16.762|292 |2018-05-23 22:19:19.762|
|293 |2018-05-23 22:19:16.962|293 |2018-05-23 22:19:19.962|
|294 |2018-05-23 22:19:17.162|294 |2018-05-23 22:19:20.162|
|100 |2018-05-23 22:18:38.362|null |null |
|99 |2018-05-23 22:18:38.162|null |null |
|103 |2018-05-23 22:18:38.962|null |null |
|101 |2018-05-23 22:18:38.562|null |null |
|102 |2018-05-23 22:18:38.762|null |null |
+--------------+-----------------------+---------+-----------------------+
答案 0 :(得分:0)
很遗憾,您遇到的问题是SPARK-26154,其中有patch的正确性问题,但评论有些拖延。
鉴于补丁程序有点庞大,您可能不想尝试手动将补丁程序移植回您的版本。然后,我认为您最好的选择是要求提交者尽快审查补丁,并要求将使用的内容移植回版本行。