在flink中实现过程功能时面对竞争条件
连接的流。我有两个正在共享的Cache Map
被并行调用的函数processElement1
和processElement2
通过2个不同的线程。
Streams1
--->(发送报价数据)
Streams2
--->(发送lms(忠诚度管理系统数据))
connect=Streams1.connect(Streams2);
connect.process(new TriggerStream);
在TriggerStream Class
中,我使用唯一的ID:MemberId
作为unique Key
存储数据,以将&lookup data
存储在缓存中。当数据流入时,我没有得到一致的结果
class LRUConcurrentCache<K,V>{
private final Map<K,V> cache;
private final int maxEntries;
public LRUConcurrentCache(final int maxEntries) {
this.cache = new LinkedHashMap<K,V>(maxEntries, 0.75F, true) {
private static final long serialVersionUID = -1236481390177598762L;
@Override
protected boolean removeEldestEntry(Map.Entry<K,V> eldest){
return size() > maxEntries;
}
};
}
//Why we cant lock on the key
public void put(K key, V value) {
synchronized(key) {
cache.put(key, value);
}
}
//get methode
public V get(K key) {
synchronized(key) {
return cache.get(key);
}
}
public class TriggerStream extends CoProcessFunction<IOffer, LMSData, String> {
private static final long serialVersionUID = 1L;
LRUCache cache;
private String offerNode;
String updatedValue, retrivedValue;
Subscriber subscriber;
TriggerStream(){
this.cache== new LRUCache(10);
}
@Override
public void processElement1(IOffer offer) throws Exception {
try {
ObjectMapper mapper = new ObjectMapper();
mapper.configure(SerializationFeature.FAIL_ON_EMPTY_BEANS, false);
mapper.enableDefaultTyping();
// TODO Auto-generated method stub
IOffer latestOffer = offer;
//Check the subscriber is there or not
retrivedValue = cache.get(latestOffer.getMemberId().toString());
if ((retrivedValue == null)) {
//Subscriber is the class that is used and converted as Json String & then store into map
Subscriber subscriber = new Subscriber();
subscriber.setMemberId(latestOffer.getMemberId());
ArrayList<IOffer> offerList = new ArrayList<IOffer>();
offerList.add(latestOffer);
subscriber.setOffers(offerList);
updatedValue = mapper.writeValueAsString(subscriber);
cache.set(subscriber.getMemberId().toString(), updatedValue);
} else {
Subscriber subscriber = mapper.readValue(retrivedValue, Subscriber.class);
List<IOffer> offers = subscriber.getOffers();
offers.add(latestOffer);
updatedValue= mapper.writeValueAsString(subscriber);
cache.set(subscriber.getMemberId().toString(), subscriberUpdatedValue);
}
} catch (Exception pb) {
applicationlogger.error("Exception in Offer Loading:"+pb);
applicationlogger.debug("*************************FINISHED OFFER LOADING*******************************");
}
applicationlogger.debug("*************************FINISHED OFFER LOADING*******************************");
}
@Override
public void processElement2(LMSData lms) throws Exception {
try {
ObjectMapper mapper = new ObjectMapper();
mapper.configure(SerializationFeature.FAIL_ON_EMPTY_BEANS, false);
mapper.enableDefaultTyping();
// TODO Auto-generated method stub
//Check the subscriber is there or not
retrivedValue = cache.get(lms.getMemberId().toString());
if(retrivedValue !=null){
Subscriber subscriber = mapper.readValue(retrivedValue, Subscriber.class);
//do some calculations
String updatedValue = mapper.writeValueAsString(subscriber);
//Update value
cache.set(subscriber.getMemberId().toString(), updatedValue);
}
} catch (Exception pb) {
applicationlogger.error("Exception in Offer Loading:"+pb);
applicationlogger.debug("*************************FINISHED OFFER LOADING*******************************");
}
applicationlogger.debug("*************************FINISHED OFFER LOADING*******************************");
}
}
答案 0 :(得分:0)
Flink不保证CoProcessFunction
(或任何其他Co * Function)以何种顺序提取数据。跨分布式并行任务维护某种确定性顺序会太昂贵。
相反,您必须在功能中使用状态和可能的计时器来解决该问题。函数中的LRUCache
应该保持状态(可能是keyed state)。否则,如果发生故障,它将丢失。您可以为第一个流添加另一个状态并缓冲记录,直到第二个流的查找值到达为止。