当我将ConnectedStreams作为计算图的一部分时,我正在试验如何正确传播背压。问题是:我有两个源,一个比另一个更快地摄取数据,我们想要重放一些数据,一个源有罕见的事件,我们用它来丰富其他源。然后将这两个源连接在流中,期望它们至少在某种程度上同步,以某种方式将它们合并在一起(制作元组,丰富,...)并返回结果。
使用单输入流可以很容易地实现背压,您只需要在processElement函数中花费很长时间。对于connectedstreams,我最初的想法是在每个processFunction中都有一些逻辑,等待另一个流赶上。例如,我可以使用时间跨度有限的缓冲区(足够大的跨度以适合水印),并且该函数不会接受会使此跨度超过阈值的事件。例如:
leftLock.aquire { nonEmptySignal =>
while (queueSpan() > capacity.toMillis && lastTs() < ctx.timestamp()) {
println("WAITING")
nonEmptySignal.await()
}
queueOp { queue =>
println(s"Left Event $value recieved ${Thread.currentThread()}")
queue.add(Left(value))
}
ctx.timerService().registerEventTimeTimer(value.ts)
}
我的示例的完整代码如下(它写有两个锁,假设从两个不同的线程访问,但事实并非如此 - 我认为):
import java.util.concurrent.atomic.{AtomicBoolean, AtomicLong}
import java.util.concurrent.locks.{Condition, ReentrantLock}
import scala.collection.JavaConverters._
import com.google.common.collect.MinMaxPriorityQueue
import org.apache.flink.api.common.state.{ValueState, ValueStateDescriptor}
import org.apache.flink.api.common.typeinfo.{TypeHint, TypeInformation}
import org.apache.flink.api.java.utils.ParameterTool
import org.apache.flink.api.scala._
import org.apache.flink.configuration.Configuration
import org.apache.flink.streaming.api.TimeCharacteristic
import org.apache.flink.streaming.api.environment.LocalStreamEnvironment
import org.apache.flink.streaming.api.functions.co.CoProcessFunction
import org.apache.flink.streaming.api.functions.source.{RichSourceFunction, SourceFunction}
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.api.watermark.Watermark
import org.apache.flink.util.Collector
import scala.collection.mutable
import scala.concurrent.duration._
trait Timestamped {
val ts: Long
}
case class StateObject(ts: Long, state: String) extends Timestamped
case class DataObject(ts: Long, data: String) extends Timestamped
case class StatefulDataObject(ts: Long, state: Option[String], data: String) extends Timestamped
class DataSource[A](factory: Long => A, rate: Int, speedUpFactor: Long = 0) extends RichSourceFunction[A] {
private val max = new AtomicLong()
private val isRunning = new AtomicBoolean(false)
private val speedUp = new AtomicLong(0)
private val WatermarkDelay = 5 seconds
override def cancel(): Unit = {
isRunning.set(false)
}
override def run(ctx: SourceFunction.SourceContext[A]): Unit = {
isRunning.set(true)
while (isRunning.get()) {
val time = System.currentTimeMillis() + speedUp.addAndGet(speedUpFactor)
val event = factory(time)
ctx.collectWithTimestamp(event, time)
println(s"Event $event sourced $speedUpFactor")
val watermark = time - WatermarkDelay.toMillis
if (max.get() < watermark) {
ctx.emitWatermark(new Watermark(time - WatermarkDelay.toMillis))
max.set(watermark)
}
Thread.sleep(rate)
}
}
}
class ConditionalOperator {
private val lock = new ReentrantLock()
private val signal: Condition = lock.newCondition()
def aquire[B](func: Condition => B): B = {
lock.lock()
try {
func(signal)
} finally {
lock.unlock()
}
}
}
class BlockingCoProcessFunction(capacity: FiniteDuration = 20 seconds)
extends CoProcessFunction[StateObject, DataObject, StatefulDataObject] {
private type MergedType = Either[StateObject, DataObject]
private lazy val leftLock = new ConditionalOperator()
private lazy val rightLock = new ConditionalOperator()
private var queueState: ValueState[MinMaxPriorityQueue[MergedType]] = _
private var dataState: ValueState[StateObject] = _
override def open(parameters: Configuration): Unit = {
super.open(parameters)
queueState = getRuntimeContext.getState(new ValueStateDescriptor[MinMaxPriorityQueue[MergedType]](
"event-queue",
TypeInformation.of(new TypeHint[MinMaxPriorityQueue[MergedType]]() {})
))
dataState = getRuntimeContext.getState(new ValueStateDescriptor[StateObject](
"event-state",
TypeInformation.of(new TypeHint[StateObject]() {})
))
}
override def processElement1(value: StateObject,
ctx: CoProcessFunction[StateObject, DataObject, StatefulDataObject]#Context,
out: Collector[StatefulDataObject]): Unit = {
leftLock.aquire { nonEmptySignal =>
while (queueSpan() > capacity.toMillis && lastTs() < ctx.timestamp()) {
println("WAITING")
nonEmptySignal.await()
}
queueOp { queue =>
println(s"Left Event $value recieved ${Thread.currentThread()}")
queue.add(Left(value))
}
ctx.timerService().registerEventTimeTimer(value.ts)
}
}
override def processElement2(value: DataObject,
ctx: CoProcessFunction[StateObject, DataObject, StatefulDataObject]#Context,
out: Collector[StatefulDataObject]): Unit = {
rightLock.aquire { nonEmptySignal =>
while (queueSpan() > capacity.toMillis && lastTs() < ctx.timestamp()) {
println("WAITING")
nonEmptySignal.await()
}
queueOp { queue =>
println(s"Right Event $value recieved ${Thread.currentThread()}")
queue.add(Right(value))
}
ctx.timerService().registerEventTimeTimer(value.ts)
}
}
override def onTimer(timestamp: Long,
ctx: CoProcessFunction[StateObject, DataObject, StatefulDataObject]#OnTimerContext,
out: Collector[StatefulDataObject]): Unit = {
println(s"Watermarked $timestamp")
leftLock.aquire { leftSignal =>
rightLock.aquire { rightSignal =>
queueOp { queue =>
while (Option(queue.peekFirst()).exists(x => timestampOf(x) <= timestamp)) {
queue.poll() match {
case Left(state) =>
dataState.update(state)
leftSignal.signal()
case Right(event) =>
println(s"Event $event emitted ${Thread.currentThread()}")
out.collect(
StatefulDataObject(
event.ts,
Option(dataState.value()).map(_.state),
event.data
)
)
rightSignal.signal()
}
}
}
}
}
}
private def queueOp[B](func: MinMaxPriorityQueue[MergedType] => B): B = queueState.synchronized {
val queue = Option(queueState.value()).
getOrElse(
MinMaxPriorityQueue.
orderedBy(Ordering.by((x: MergedType) => timestampOf(x))).create[MergedType]()
)
val result = func(queue)
queueState.update(queue)
result
}
private def timestampOf(data: MergedType): Long = data match {
case Left(y) =>
y.ts
case Right(y) =>
y.ts
}
private def queueSpan(): Long = {
queueOp { queue =>
val firstTs = Option(queue.peekFirst()).map(timestampOf).getOrElse(Long.MaxValue)
val lastTs = Option(queue.peekLast()).map(timestampOf).getOrElse(Long.MinValue)
println(s"Span: $firstTs - $lastTs = ${lastTs - firstTs}")
lastTs - firstTs
}
}
private def lastTs(): Long = {
queueOp { queue =>
Option(queue.peekLast()).map(timestampOf).getOrElse(Long.MinValue)
}
}
}
object BackpressureTest {
var data = new mutable.ArrayBuffer[DataObject]()
def main(args: Array[String]): Unit = {
val streamConfig = new Configuration()
val env = new StreamExecutionEnvironment(new LocalStreamEnvironment(streamConfig))
env.getConfig.disableSysoutLogging()
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
env.setParallelism(1)
val stateSource = env.addSource(new DataSource(ts => StateObject(ts, ts.toString), 1000))
val dataSource = env.addSource(new DataSource(ts => DataObject(ts, ts.toString), 100, 100))
stateSource.
connect(dataSource).
keyBy(_ => "", _ => "").
process(new BlockingCoProcessFunction()).
print()
env.execute()
}
}
连接流的问题是,当它的流太远时,似乎你不能简单地阻塞其中一个processFunction,因为这会阻塞另一个processFunction。另一方面,如果我简单地接受了这个作业中的所有事件,那么最终过程函数会耗尽内存。因为它会缓冲前面的整个流。
所以我的问题是:是否有可能将背压传播到ConnectedStreams中的每个流中,如果是这样,怎么样?或者,有没有其他好方法来处理这个问题?可能所有来源都以某种方式进行沟通,以使他们大部分时间处于相同的事件时间?
答案 0 :(得分:1)
从我对StreamTwoInputProcessor中的代码的阅读中,我看起来像processInput()方法负责实现有问题的策略。也许可以实现从具有较低水印的任何流中读取的变体,只要它具有未读输入即可。但是,不确定整体会产生什么样的影响。