比方说,我正在研究两个主题(实际上是其中的20个)。由于每个主题都生成27个文件,我需要将它们合并以生成另外9个文件,因此我想使这一过程自动化!
我有一个因素在九个层面上有所不同: AA,AB,AM,BA,BB,BM,MA,MB,MM。
对于每种治疗,我都会得到三个输出文件,例如,对于AA治疗,我会得到: AA1.csv,AA1.txt和AA1log.txt。
我将需要在这些文件上运行一个脚本(我们称其为R1);它将它们合并到一个摘要文件中。然后,我需要在生成的所有摘要文件上运行另一个脚本(我将其称为R2)。
所有主题的所有输出文件都在一个文件夹“ data”中。
(对于R示例,感谢@ManuelBickel)
# make sure you are in a safe directory!
### Generate the toy data ###
# I define the main directories I need
dir_project = "test"
dirs = list(
dir_project = dir_project
,dir_data = paste0(dir_project, "/data")
,dir_summary = paste0(dir_project, "/summary")
,dir_plots= paste0(dir_project, "/plots")
)
# create dirs
lapply(dirs, dir.create)
# create some exemplary data and write it in dir
m = matrix(1:4, nrow = 2)
data = list(AA = m, AB = m, AM = m
,BA = m, BB = m, BM = m,
MA = m, MB = m, MM =m)
# generate the csv files for subject 1 and 2
for (i in 1:length(data)) {
write.csv(data[[i]], file = paste0(dirs[["dir_data"]], "/", names(data[i]), "1.csv"))
}
for (i in 1:length(data)) {
write.csv(data[[i]], file = paste0(dirs[["dir_data"]], "/", names(data[i]), "2.csv"))
}
# Generate the .txt files for subjects 1 and 2
for (i in
1:length(data)) {
write.table(data[[i]], file = paste0(dirs[["dir_data"]], "/", names(data[i]), "1.txt"))
}
for (i in 1:length(data)) {
write.table(data[[i]], file = paste0(dirs[["dir_data"]], "/", names(data[i]), "2.txt"))
}
# Generate the log.txt files for subjects 1 and 2
for (i in 1:length(data)) {
write.table(data[[i]], file = paste0(dirs[["dir_data"]], "/", names(data[i]), "1log.txt"))
}
for (i in 1:length(data)) {
write.table(data[[i]], file = paste0(dirs[["dir_data"]], "/", names(data[i]), "2log.txt"))
}
以下是我的数据文件夹中的文件:
list.files(dirs[["dir_data"]])
# [1] "AA1.csv" "AA1.txt" "AA1log.txt" "AA2.csv" "AA2.txt" "AA2log.txt" "AB1.csv" "AB1.txt" "AB1log.txt"
# [10] "AB2.csv" "AB2.txt" "AB2log.txt" "AM1.csv" "AM1.txt" "AM1log.txt" "AM2.csv" "AM2.txt" "AM2log.txt"
# [19] "BA1.csv" "BA1.txt" "BA1log.txt" "BA2.csv" "BA2.txt" "BA2log.txt" "BB1.csv" "BB1.txt" "BB1log.txt"
# [28] "BB2.csv" "BB2.txt" "BB2log.txt" "BM1.csv" "BM1.txt" "BM1log.txt" "BM2.csv" "BM2.txt" "BM2log.txt"
# [37] "MA1.csv" "MA1.txt" "MA1log.txt" "MA2.csv" "MA2.txt" "MA2log.txt" "MB1.csv" "MB1.txt" "MB1log.txt"
# [46] "MB2.csv" "MB2.txt" "MB2log.txt" "MM1.csv" "MM1.txt" "MM1log.txt" "MM2.csv" "MM2.txt" "MM2log.txt"
现在,我需要我的代码来选择文件:AA1.csv,AA1.txt和AA1log.txt,并在它们上运行脚本R1。
脚本R1将生成一个csv文件作为输出,该文件将以“ summaryAA1_csv”的形式进入文件夹“ data”。它还将生成32 png。文件(AA1_1.png,AA1_2.png等),这些文件将进入文件夹“ plots”中的子文件夹“ AA1”。
然后,我将从文件夹“数据”中选择主题1的所有摘要文件,然后运行脚本R2。
基本上,首先我需要选择主题1产生的所有数据集;然后我需要选择通过相同处理生成的那些(首先是所有AA,然后是AB)。经过9种治疗后,我将转到主题2。
让我们说这就是R1在做的事情:
temp = read.csv("test/data/AA1.csv", sep=",", row.names=1)
temp1 <- as.matrix(temp)
temp2 <- read.table("test/data/AA1.txt")
temp3 <- read.table("test/data/AA1log.txt")
summaryAA1 <- temp1 + temp2 + temp3
summaryAA1
在我编写R1代码时,它还会生成位于不同文件夹中的图(每次处理32张!)
dir.create("test/plots/AA1plots")
png(filename="test/plots//AA1plots/AA1_1_plot.png")
plot(summaryAA1)
dev.off()
我的问题是如何使我的代码两次选择文件;首先选择引用相同治疗(AA)和相同主题编号的文件;运行完所有处理后,移至引用第二个主题的相同处理的文件。
我也乐意接受有关更方便的命名系统的建议,这可能会使循环更加方便。
答案 0 :(得分:1)
请考虑组织输入(受试者和治疗组合的列表)和过程(R1和R2)。然后适当地打电话给他们:
subjects <- c(1, 2)
treatments <- c("AA", "AB", "AM", "BA", "BB", "BM", "MA", "MB", "MM")
r1_list <- as.vector(sapply(subjects, function(x,y) paste0(y,x), treatments))
# [1] "AA1" "AB1" "AM1" "BA1" "BB1" "BM1" "MA1" "MB1" "MM1" "AA2" "AB2" "AM2" "BA2" "BB2" "BM2" "MA2" "MB2" "MM2"
r2_list <- sapply(subjects, function(x,y) paste0(y,x), treatments, simplify = FALSE)
r2_list
# [[1]]
# [1] "AA1" "AB1" "AM1" "BA1" "BB1" "BM1" "MA1" "MB1" "MM1"
# [[2]]
# [1] "AA2" "AB2" "AM2" "BA2" "BB2" "BM2" "MA2" "MB2" "MM2"
R1脚本
setwd("test")
my_func1 <- function(f){
temp = read.csv(paste0("data/", f, ".csv"), row.names=1)
temp1 <- as.matrix(temp)
temp2 <- read.table(paste0("data/", f, ".txt"))
temp3 <- read.table(paste0("data/", f, "log.txt"))
# SUMMARIES
summary_all <- temp1 + temp2 + temp3
summary_data <- read.csv(paste0("summary", f, ".csv"))
...
# IMAGES
for (i in seq(1,32)) {
dir.create(paste0("plots/", f, "plots"))
png(filename=paste0("plots/", f, "plots/", f, "_", i, "_plot.png"))
plot(...)
dev.off()
}
}
# CREATE ALL SUMMARY AND IMAGE FILES
for (j in r1_list) my_func1(j)
R2脚本
my_func2 <- function(items){
files <- paste0("summary", items, ".csv")
# READ ALL SUMMARY FILES INTO A LIST OF DATA FRAMES
df_list <- lapply(files, read.csv)
# PROCESS LIST
...
}
# PROCESS SUMMARY FILES
for (j in r2_list) my_func2(j)