我正在绘制有关暴露于不同处理方法的幼虫密度的数据。我有两个采样日(第4天和第7天)。我一直在尝试进行线性回归,但在绘制时遇到了一些问题。
four <- read.csv("four.csv", header = T)
df1 <- structure(list(day = structure(c(1L, 1L, 1L, 1L), .Label = "four", class = "factor"),
treat = c(0L, 10L, 100L, 300L), dens = c(1.2, 1.6, 1.883333333,
1.216666667)), .Names = c("day", "treat", "dens"), class = "data.frame", row.names = c(NA,
-4L))
mfour = lm(four$treat ~ four$dens)
plot(four$treat, four$dens)
abline(lm(four$treat ~ four$dens))
通过这段代码,我得到了-一条回归线似乎没有显示相关性:
beads <- read.csv("beads.csv", header = T)
df2 <- structure(list(day = structure(c(1L, 1L, 1L, 1L, 2L, 2L, 2L,
2L), .Label = c("four", "seven"), class = "factor"), treat = c(0L,
10L, 100L, 300L, 0L, 10L, 100L, 300L), dens = c(1.2, 1.6, 1.883333333,
1.216666667, 1.833333333, 1.766666667, 1.4, 1.55)), .Names = c("day",
"treat", "dens"), row.names = c(NA, 8L), class = "data.frame")
p1 <- ggplot(beads, aes(x=treat, y=dens, col=day)) + geom_point() +
geom_smooth(method="lm", se=FALSE) +
ylab("dens") +
xlab("treat")
p1 <- p1 + theme_few() +
scale_colour_discrete(name="Day",
breaks=c("four", "seven"),
labels=c("Four", "Seven"))
p1
但是,当我使用ggplot时(因为我想将我的两个采样日都包括在同一图中的回归线),我得到的东西看起来像是相关的?
我很困惑为什么会这样..有人有任何想法吗? 预先感谢!
答案 0 :(得分:0)
four<- structure(list(day = structure(c(1L, 1L, 1L, 1L), .Label = "four", class = "factor"),
treat = c(0L, 10L, 100L, 300L), dens = c(1.2, 1.6, 1.883333333,
1.216666667)), .Names = c("day", "treat", "dens"), class = "data.frame", row.names = c(NA,
-4L))
您可以使用lm(y〜x)
plot(four$treat, four$dens)
abline(lm(four$dens~four$treat),col="green")
或从回归模型中读取系数
mfour = lm(four$dens ~ four$treat)
abline(coef = coef(mfour), col = "blue")
或使用lsfit(x,y)
abline(lsfit(four$treat , four$dens),col="red")
plot(four$treat, four$dens)