select with window function (dense_rank()) in SparkSQL

时间:2018-07-25 05:16:56

标签: mysql sql apache-spark-sql dense-rank

I have a table which contains records for customer purchases, I need to specify that purchase was made in specific datetime window one window is 8 days , so if I had purchase today and one in 5 days its mean my purchase if window number 1, but if I did it on day one today and next in 8 days, first purchase will be in window 1 and the last purchase in window 2

create temporary table transactions
 (client_id int,
 transaction_ts datetime,
 store_id int)

 insert into transactions values 
 (1,'2018-06-01 12:17:37', 1),
 (1,'2018-06-02 13:17:37', 2),
 (1,'2018-06-03 14:17:37', 3),
 (1,'2018-06-09 10:17:37', 2),
 (2,'2018-06-02 10:17:37', 1),
 (2,'2018-06-02 13:17:37', 2),
 (2,'2018-06-08 14:19:37', 3),
 (2,'2018-06-16 13:17:37', 2),
 (2,'2018-06-17 14:17:37', 3)

the window is 8 days, the problem is I don't understand how to specify for dense_rank() OVER (PARTITION BY) to look at datetime and make a window in 8 days, as result I need something like this

1,'2018-06-01 12:17:37', 1,1
1,'2018-06-02 13:17:37', 2,1
1,'2018-06-03 14:17:37', 3,1
1,'2018-06-09 10:17:37', 2,2
2,'2018-06-02 10:17:37', 1,1
2,'2018-06-02 13:17:37', 2,1
2,'2018-06-08 14:19:37', 3,2
2,'2018-06-16 13:17:37', 2,3
2,'2018-06-17 14:17:37', 3,3

any idea how to get it? I can run it in Mysql or Spark SQL, but Mysql doesn't support partition. Still cannot find solution! any help

2 个答案:

答案 0 :(得分:1)

您很有可能可以使用时间和分区窗口功能在Spark SQL中解决此问题:

val purchases = Seq((1,"2018-06-01 12:17:37", 1), (1,"2018-06-02 13:17:37", 2), (1,"2018-06-03 14:17:37", 3), (1,"2018-06-09 10:17:37", 2), (2,"2018-06-02 10:17:37", 1), (2,"2018-06-02 13:17:37", 2), (2,"2018-06-08 14:19:37", 3), (2,"2018-06-16 13:17:37", 2), (2,"2018-06-17 14:17:37", 3)).toDF("client_id", "transaction_ts", "store_id")

purchases.show(false)
+---------+-------------------+--------+
|client_id|transaction_ts     |store_id|
+---------+-------------------+--------+
|1        |2018-06-01 12:17:37|1       |
|1        |2018-06-02 13:17:37|2       |
|1        |2018-06-03 14:17:37|3       |
|1        |2018-06-09 10:17:37|2       |
|2        |2018-06-02 10:17:37|1       |
|2        |2018-06-02 13:17:37|2       |
|2        |2018-06-08 14:19:37|3       |
|2        |2018-06-16 13:17:37|2       |
|2        |2018-06-17 14:17:37|3       |
+---------+-------------------+--------+



val groupedByTimeWindow = purchases.groupBy($"client_id", window($"transaction_ts", "8 days")).agg(collect_list("transaction_ts").as("transaction_tss"), collect_list("store_id").as("store_ids"))

val withWindowNumber = groupedByTimeWindow.withColumn("window_number", row_number().over(windowByClient))

withWindowNumber.orderBy("client_id", "window.start").show(false)

    +---------+---------------------------------------------+---------------------------------------------------------------+---------+-------------+
|client_id|window                                       |transaction_tss                                                |store_ids|window_number|
+---------+---------------------------------------------+---------------------------------------------------------------+---------+-------------+
|1        |[2018-05-28 17:00:00.0,2018-06-05 17:00:00.0]|[2018-06-01 12:17:37, 2018-06-02 13:17:37, 2018-06-03 14:17:37]|[1, 2, 3]|1            |
|1        |[2018-06-05 17:00:00.0,2018-06-13 17:00:00.0]|[2018-06-09 10:17:37]                                          |[2]      |2            |
|2        |[2018-05-28 17:00:00.0,2018-06-05 17:00:00.0]|[2018-06-02 10:17:37, 2018-06-02 13:17:37]                     |[1, 2]   |1            |
|2        |[2018-06-05 17:00:00.0,2018-06-13 17:00:00.0]|[2018-06-08 14:19:37]                                          |[3]      |2            |
|2        |[2018-06-13 17:00:00.0,2018-06-21 17:00:00.0]|[2018-06-16 13:17:37, 2018-06-17 14:17:37]                     |[2, 3]   |3            |
+---------+---------------------------------------------+---------------------------------------------------------------+---------+-------------+

如果需要,您可以explode列出store_ids或transaction_tss中的元素。

希望有帮助!

答案 1 :(得分:0)

我没有使用提出的Spark解决方案,而是通过纯SQL逻辑和游标来完成的。它不是很有效,但是我需要完成工作