我有一个数据集结构,例如下面存储在Hive中的数据集,称之为df:
+-----+-----+----------+--------+
| id1 | id2 | date | amount |
+-----+-----+----------+--------+
| 1 | 2 | 11-07-17 | 0.93 |
| 2 | 2 | 11-11-17 | 1.94 |
| 2 | 2 | 11-09-17 | 1.90 |
| 1 | 1 | 11-10-17 | 0.33 |
| 2 | 2 | 11-10-17 | 1.93 |
| 1 | 1 | 11-07-17 | 0.25 |
| 1 | 1 | 11-09-17 | 0.33 |
| 1 | 1 | 11-12-17 | 0.33 |
| 2 | 2 | 11-08-17 | 1.90 |
| 1 | 1 | 11-08-17 | 0.30 |
| 2 | 2 | 11-12-17 | 2.01 |
| 1 | 2 | 11-12-17 | 1.00 |
| 1 | 2 | 11-09-17 | 0.94 |
| 2 | 2 | 11-07-17 | 1.94 |
| 1 | 2 | 11-11-17 | 1.92 |
| 1 | 1 | 11-11-17 | 0.33 |
| 1 | 2 | 11-10-17 | 1.92 |
| 1 | 2 | 11-08-17 | 0.94 |
+-----+-----+----------+--------+
我希望按id1和id2进行分区,然后按日期在id1和id2的每个分组中按降序排序,然后排名" amount"在那之内,相同的数量"连续几天将获得相同的排名。我希望看到的有序和排名输出显示在这里:
+-----+-----+------------+--------+------+
| id1 | id2 | date | amount | rank |
+-----+-----+------------+--------+------+
| 1 | 1 | 2017-11-12 | 0.33 | 1 |
| 1 | 1 | 2017-11-11 | 0.33 | 1 |
| 1 | 1 | 2017-11-10 | 0.33 | 1 |
| 1 | 1 | 2017-11-09 | 0.33 | 1 |
| 1 | 1 | 2017-11-08 | 0.30 | 2 |
| 1 | 1 | 2017-11-07 | 0.25 | 3 |
| 1 | 2 | 2017-11-12 | 1.00 | 1 |
| 1 | 2 | 2017-11-11 | 1.92 | 2 |
| 1 | 2 | 2017-11-10 | 1.92 | 2 |
| 1 | 2 | 2017-11-09 | 0.94 | 3 |
| 1 | 2 | 2017-11-08 | 0.94 | 3 |
| 1 | 2 | 2017-11-07 | 0.93 | 4 |
| 2 | 2 | 2017-11-12 | 2.01 | 1 |
| 2 | 2 | 2017-11-11 | 1.94 | 2 |
| 2 | 2 | 2017-11-10 | 1.93 | 3 |
| 2 | 2 | 2017-11-09 | 1.90 | 4 |
| 2 | 2 | 2017-11-08 | 1.90 | 4 |
| 2 | 2 | 2017-11-07 | 1.94 | 5 |
+-----+-----+------------+--------+------+
我尝试使用以下SQL查询:
SELECT
id1,
id2,
date,
amount,
dense_rank() OVER (PARTITION BY id1, id2 ORDER BY date DESC) AS rank
FROM
df
GROUP BY
id1,
id2,
date,
amount
但是,由于我没有收到我正在寻找的输出,因此该查询似乎没有按照我的意愿行事。
看起来像使用dense_rank的窗口函数,分区依据和order by是我需要的但是我似乎无法让它给我那些我想要的样本输出。任何帮助将非常感激!谢谢!
答案 0 :(得分:2)
这非常棘手。我认为您需要使用lag()
来查看值更改的位置,然后执行累计求和:
select df.*,
sum(case when prev_amount = amount then 0 else 1 end) over
(partition by id1, id2 order by date desc) as rank
from (select df.*,
lag(amount) over (partition by id1, id2 order by date desc) as prev_amount
from df
) df;