tl; dr summary :给我资源或帮助修复以下代码,以便通过任意矩阵转换SVG <path>
元素的路径命令。
详情:
我正在编写一个库,将任意SVG形状转换为<path>
元素。当层次结构中没有transform="..."
个元素时,我可以使用它,但现在我想将对象的局部变换烘焙到path data命令本身。
在处理简单的moveto / lineto命令时,这主要是(下面的代码)。但是,我不确定转换贝塞尔手柄或arcTo参数的适当方法。
例如,我可以将此圆角矩形转换为<path>
:
<rect x="10" y="30" rx="10" ry="20" width="80" height="70" />
--> <path d="M20,30 L80,30 A10,20,0,0,1,90,50 L90,80 A10,20,0,0,1,80,100
L20,100 A10,20,0,0,1,10,80 L10,50 A10,20,0,0,1,20,30" />
在没有任何圆角的情况下进行转换时,我得到了有效的结果:
<rect x="10" y="30" width="80" height="70"
transform="translate(-200,0) scale(1.5) rotate(50)" />
--> <path d="M10,30 L90,30 L90,100 L10,100 L10,30" />
但是,仅转换elliptical arc命令的x / y坐标会产生有趣的结果:
虚线是实际变换后的矩形,绿色填充是我的路径。
以下是我到目前为止的代码(略微减少)。我还有一个test page,我正在测试各种形状。请帮助我确定如何在给定任意变换矩阵的情况下正确转换elliptical arc
和各种其他贝塞尔曲线命令。
function flattenToPaths(el,transform,svg){
if (!svg) svg=el; while(svg && svg.tagName!='svg') svg=svg.parentNode;
var doc = el.ownerDocument;
var svgNS = svg.getAttribute('xmlns');
// Identity transform if nothing passed in
if (!transform) transform= svg.createSVGMatrix();
// Calculate local transform matrix for the object
var localMatrix = svg.createSVGMatrix();
for (var xs=el.transform.baseVal,i=xs.numberOfItems-1;i>=0;--i){
localMatrix = xs.getItem(i).matrix.multiply(localMatrix);
}
// Transform the local transform by whatever was recursively passed in
transform = transform.multiply(localMatrix);
var path = doc.createElementNS(svgNS,'path');
switch(el.tagName){
case 'rect':
path.setAttribute('stroke',el.getAttribute('stroke'));
var x = el.getAttribute('x')*1, y = el.getAttribute('y')*1,
w = el.getAttribute('width')*1, h = el.getAttribute('height')*1,
rx = el.getAttribute('rx')*1, ry = el.getAttribute('ry')*1;
if (rx && !el.hasAttribute('ry')) ry=rx;
else if (ry && !el.hasAttribute('rx')) rx=ry;
if (rx>w/2) rx=w/2;
if (ry>h/2) ry=h/2;
path.setAttribute('d',
'M'+(x+rx)+','+y+
'L'+(x+w-rx)+','+y+
((rx||ry) ? ('A'+rx+','+ry+',0,0,'+(rx*ry<0?0:1)+','+(x+w)+','+(y+ry)) : '') +
'L'+(x+w)+','+(y+h-ry)+
((rx||ry) ? ('A'+rx+','+ry+',0,0,'+(rx*ry<0?0:1)+','+(x+w-rx)+','+(y+h)) : '')+
'L'+(x+rx)+','+(y+h)+
((rx||ry) ? ('A'+rx+','+ry+',0,0,'+(rx*ry<0?0:1)+','+x+','+(y+h-ry)) : '')+
'L'+x+','+(y+ry)+
((rx||ry) ? ('A'+rx+','+ry+',0,0,'+(rx*ry<0?0:1)+','+(x+rx)+','+y) : '')
);
break;
case 'circle':
var cx = el.getAttribute('cx')*1, cy = el.getAttribute('cy')*1,
r = el.getAttribute('r')*1, r0 = r/2+','+r/2;
path.setAttribute('d','M'+cx+','+(cy-r)+' A'+r0+',0,0,0,'+cx+','+(cy+r)+' '+r0+',0,0,0,'+cx+','+(cy-r) );
break;
case 'ellipse':
var cx = el.getAttribute('cx')*1, cy = el.getAttribute('cy')*1,
rx = el.getAttribute('rx')*1, ry = el.getAttribute('ry')*1;
path.setAttribute('d','M'+cx+','+(cy-ry)+' A'+rx+','+ry+',0,0,0,'+cx+','+(cy+ry)+' '+rx+','+ry+',0,0,0,'+cx+','+(cy-ry) );
break;
case 'line':
var x1=el.getAttribute('x1')*1, y1=el.getAttribute('y1')*1,
x2=el.getAttribute('x2')*1, y2=el.getAttribute('y2')*1;
path.setAttribute('d','M'+x1+','+y1+'L'+x2+','+y2);
break;
case 'polyline':
case 'polygon':
for (var i=0,l=[],pts=el.points,len=pts.numberOfItems;i<len;++i){
var p = pts.getItem(i);
l[i] = p.x+','+p.y;
}
path.setAttribute('d',"M"+l.shift()+"L"+l.join(' ') + (el.tagName=='polygon') ? 'z' : '');
break;
case 'path':
path = el.cloneNode(false);
break;
}
// Convert local space by the transform matrix
var x,y;
var pt = svg.createSVGPoint();
var setXY = function(x,y,xN,yN){
pt.x = x; pt.y = y;
pt = pt.matrixTransform(transform);
if (xN) seg[xN] = pt.x;
if (yN) seg[yN] = pt.y;
};
// Extract rotation and scale from the transform
var rotation = Math.atan2(transform.b,transform.d)*180/Math.PI;
var sx = Math.sqrt(transform.a*transform.a+transform.c*transform.c);
var sy = Math.sqrt(transform.b*transform.b+transform.d*transform.d);
// FIXME: Must translate any Horizontal or Vertical lineto commands into absolute moveto
for (var segs=path.pathSegList,c=segs.numberOfItems,i=0;i<c;++i){
var seg = segs.getItem(i);
// Odd-numbered path segments are all relative
// http://www.w3.org/TR/SVG/paths.html#InterfaceSVGPathSeg
var isRelative = (seg.pathSegType%2==1);
var hasX = seg.x != null;
var hasY = seg.y != null;
if (hasX) x = isRelative ? x+seg.x : seg.x;
if (hasY) y = isRelative ? y+seg.y : seg.y;
if (hasX || hasY) setXY( x, y, hasX && 'x', hasY && 'y' );
if (seg.x1 != null) setXY( seg.x1, seg.y1, 'x1', 'y1' );
if (seg.x2 != null) setXY( seg.x2, seg.y2, 'x2', 'y2' );
if (seg.angle != null){
seg.angle += rotation;
seg.r1 *= sx; // FIXME; only works for uniform scale
seg.r2 *= sy; // FIXME; only works for uniform scale
}
}
return path;
}
答案 0 :(得分:15)
我制作了一个普通的SVG flattener flatten.js,它支持所有形状和路径命令: https://gist.github.com/timo22345/9413158
基本用法:flatten(document.getElementById('svg'))
;
它的作用:展平元素(将元素转换为路径并展平变换)。 如果参数元素(其id高于'svg')有子节点,或者它的后代有子节点, 这些儿童元素也被夷为平地。
可以展平的内容:整个SVG文档,单个形状(路径,圆形,椭圆等)和组。嵌套组会自动处理。
属性怎么样?将复制所有属性。只删除在path元素中无效的参数(例如r,rx,ry,cx,cy),但不再需要它们。此外,还会删除transform属性,因为转换会被展平为路径命令。
如果要使用非仿射方法修改路径坐标(例如透视扭曲),
您可以使用以下方法将所有段转换为三次曲线
flatten(document.getElementById('svg'), true);
还有'toAbsolute'(将坐标转换为绝对)和'dec'的参数, 小数分隔符后的位数。
极端路径和形状测试仪:https://jsfiddle.net/fjm9423q/embedded/result/
基本用法示例:http://jsfiddle.net/nrjvmqur/embedded/result/
缺点:文本元素不起作用。这可能是我的下一个目标。
答案 1 :(得分:4)
如果每个对象(圆圈等)首先转换为路径,那么考虑转换就相当容易了。我制作了一个测试平台(http://jsbin.com/oqojan/73),您可以在其中测试功能。测试平台创建随机路径命令并将随机变换应用于路径,然后展平变换。当然,实际上路径命令和变换不是随机的,但为了测试准确性,它很好。
有一个函数flatten_transformations(),它可以完成主要任务:
function flatten_transformations(path_elem, normalize_path, to_relative, dec) {
// Rounding coordinates to dec decimals
if (dec || dec === 0) {
if (dec > 15) dec = 15;
else if (dec < 0) dec = 0;
}
else dec = false;
function r(num) {
if (dec !== false) return Math.round(num * Math.pow(10, dec)) / Math.pow(10, dec);
else return num;
}
// For arc parameter rounding
var arc_dec = (dec !== false) ? 6 : false;
arc_dec = (dec && dec > 6) ? dec : arc_dec;
function ra(num) {
if (arc_dec !== false) return Math.round(num * Math.pow(10, arc_dec)) / Math.pow(10, arc_dec);
else return num;
}
var arr;
//var pathDOM = path_elem.node;
var pathDOM = path_elem;
var d = pathDOM.getAttribute("d").trim();
// If you want to retain current path commans, set normalize_path to false
if (!normalize_path) { // Set to false to prevent possible re-normalization.
arr = Raphael.parsePathString(d); // str to array
arr = Raphael._pathToAbsolute(arr); // mahvstcsqz -> uppercase
}
// If you want to modify path data using nonAffine methods,
// set normalize_path to true
else arr = Raphael.path2curve(d); // mahvstcsqz -> MC
var svgDOM = pathDOM.ownerSVGElement;
// Get the relation matrix that converts path coordinates
// to SVGroot's coordinate space
var matrix = pathDOM.getTransformToElement(svgDOM);
// The following code can bake transformations
// both normalized and non-normalized data
// Coordinates have to be Absolute in the following
var i = 0,
j, m = arr.length,
letter = "",
x = 0,
y = 0,
point, newcoords = [],
pt = svgDOM.createSVGPoint(),
subpath_start = {};
subpath_start.x = "";
subpath_start.y = "";
for (; i < m; i++) {
letter = arr[i][0].toUpperCase();
newcoords[i] = [];
newcoords[i][0] = arr[i][0];
if (letter == "A") {
x = arr[i][6];
y = arr[i][7];
pt.x = arr[i][6];
pt.y = arr[i][7];
newcoords[i] = arc_transform(arr[i][4], arr[i][5], arr[i][6], arr[i][4], arr[i][5], pt, matrix);
// rounding arc parameters
// x,y are rounded normally
// other parameters at least to 5 decimals
// because they affect more than x,y rounding
newcoords[i][7] = ra(newcoords[i][8]); //rx
newcoords[i][9] = ra(newcoords[i][10]); //ry
newcoords[i][11] = ra(newcoords[i][12]); //x-axis-rotation
newcoords[i][6] = r(newcoords[i][6]); //x
newcoords[i][7] = r(newcoords[i][7]); //y
}
else if (letter != "Z") {
// parse other segs than Z and A
for (j = 1; j < arr[i].length; j = j + 2) {
if (letter == "V") y = arr[i][j];
else if (letter == "H") x = arr[i][j];
else {
x = arr[i][j];
y = arr[i][j + 1];
}
pt.x = x;
pt.y = y;
point = pt.matrixTransform(matrix);
newcoords[i][j] = r(point.x);
newcoords[i][j + 1] = r(point.y);
}
}
if ((letter != "Z" && subpath_start.x == "") || letter == "M") {
subpath_start.x = x;
subpath_start.y = y;
}
if (letter == "Z") {
x = subpath_start.x;
y = subpath_start.y;
}
if (letter == "V" || letter == "H") newcoords[i][0] = "L";
}
if (to_relative) newcoords = Raphael.pathToRelative(newcoords);
newcoords = newcoords.flatten().join(" ").replace(/\s*([A-Z])\s*/gi, "$1").replace(/\s*([-])/gi, "$1");
return newcoords;
} // function flatten_transformations
// Helper tool to piece together Raphael's paths into strings again
Array.prototype.flatten || (Array.prototype.flatten = function() {
return this.reduce(function(a, b) {
return a.concat('function' === typeof b.flatten ? b.flatten() : b);
}, []);
});
代码使用Raphael.pathToRelative(),Raphael._pathToAbsolute()和Raphael.path2curve()。 Raphael.path2curve()是修复版本。
如果使用参数normalize_path = true调用flatten_transformations(),则所有命令都将转换为Cubics,一切都很好。通过删除if (letter == "A") { ... }
并删除H,V和Z的处理,可以简化代码。简化版本可以是this。
但是因为有人可能只想烘焙变革而不是制作所有的Segs - &gt;立方体正常化,我添加了这种可能性。因此,如果要使用normalize_path = false展平变换,这意味着椭圆弧参数也必须展平,并且只需将矩阵应用于坐标就无法处理它们。两个无线电(rx ry),x轴旋转,大弧标志和扫描标志必须单独处理。因此,以下函数可以展平Arcs的变换。矩阵参数是一个关系矩阵,它来自flatten_transformations()中已经使用过的。
// Origin: http://devmaster.net/forums/topic/4947-transforming-an-ellipse/
function arc_transform(a_rh, a_rv, a_offsetrot, large_arc_flag, sweep_flag, endpoint, matrix, svgDOM) {
function NEARZERO(B) {
if (Math.abs(B) < 0.0000000000000001) return true;
else return false;
}
var rh, rv, rot;
var m = []; // matrix representation of transformed ellipse
var s, c; // sin and cos helpers (the former offset rotation)
var A, B, C; // ellipse implicit equation:
var ac, A2, C2; // helpers for angle and halfaxis-extraction.
rh = a_rh;
rv = a_rv;
a_offsetrot = a_offsetrot * (Math.PI / 180); // deg->rad
rot = a_offsetrot;
s = parseFloat(Math.sin(rot));
c = parseFloat(Math.cos(rot));
// build ellipse representation matrix (unit circle transformation).
// the 2x2 matrix multiplication with the upper 2x2 of a_mat is inlined.
m[0] = matrix.a * +rh * c + matrix.c * rh * s;
m[1] = matrix.b * +rh * c + matrix.d * rh * s;
m[2] = matrix.a * -rv * s + matrix.c * rv * c;
m[3] = matrix.b * -rv * s + matrix.d * rv * c;
// to implict equation (centered)
A = (m[0] * m[0]) + (m[2] * m[2]);
C = (m[1] * m[1]) + (m[3] * m[3]);
B = (m[0] * m[1] + m[2] * m[3]) * 2.0;
// precalculate distance A to C
ac = A - C;
// convert implicit equation to angle and halfaxis:
if (NEARZERO(B)) {
a_offsetrot = 0;
A2 = A;
C2 = C;
} else {
if (NEARZERO(ac)) {
A2 = A + B * 0.5;
C2 = A - B * 0.5;
a_offsetrot = Math.PI / 4.0;
} else {
// Precalculate radical:
var K = 1 + B * B / (ac * ac);
// Clamp (precision issues might need this.. not likely, but better save than sorry)
if (K < 0) K = 0;
else K = Math.sqrt(K);
A2 = 0.5 * (A + C + K * ac);
C2 = 0.5 * (A + C - K * ac);
a_offsetrot = 0.5 * Math.atan2(B, ac);
}
}
// This can get slightly below zero due to rounding issues.
// it's save to clamp to zero in this case (this yields a zero length halfaxis)
if (A2 < 0) A2 = 0;
else A2 = Math.sqrt(A2);
if (C2 < 0) C2 = 0;
else C2 = Math.sqrt(C2);
// now A2 and C2 are half-axis:
if (ac <= 0) {
a_rv = A2;
a_rh = C2;
} else {
a_rv = C2;
a_rh = A2;
}
// If the transformation matrix contain a mirror-component
// winding order of the ellise needs to be changed.
if ((matrix.a * matrix.d) - (matrix.b * matrix.c) < 0) {
if (!sweep_flag) sweep_flag = 1;
else sweep_flag = 0;
}
// Finally, transform arc endpoint. This takes care about the
// translational part which we ignored at the whole math-showdown above.
endpoint = endpoint.matrixTransform(matrix);
// Radians back to degrees
a_offsetrot = a_offsetrot * 180 / Math.PI;
var r = ["A", a_rh, a_rv, a_offsetrot, large_arc_flag, sweep_flag, endpoint.x, endpoint.y];
return r;
}
旧例子:
我制作了an example,其中包含已应用转换的细分M Q A A Q M
的路径。路径在g内,也有trans应用。并且要确保这个g在另一个应用了不同变换的g中。代码可以:
A)首先将所有路径段标准化(感谢Raphaël的path2curve,我做了a bug fix,在此修复之后,所有可能的路径段组合最终起作用:http://jsbin.com/oqojan/42。原始的Raphaël2.1。 0有错误的行为,因为你可以看到here,如果没有点击几次路径来生成新的曲线。)
B)然后使用原生函数getTransformToElement()
,createSVGPoint()
和matrixTransform()
展平转换。
唯一缺少的是将圆形,矩形和多边形转换为路径命令的方法,但据我所知,你有一个很好的代码。
答案 2 :(得分:2)
只要您将所有坐标转换为绝对坐标,所有贝塞尔曲线都可以正常工作;他们的把柄没什么神奇之处。至于椭圆弧命令,唯一的通用解决方案(处理非均匀缩放,正如你所指出的,弧命令无法表示,在一般情况下)是首先将它们转换为贝塞尔近似值。
https://github.com/johan/svg-js-utils/blob/df605f3e21cc7fcd2d604eb318fb2466fd6d63a7/paths.js#L56..L113(在同一个文件中使用absolutizePath
,Convert SVG Path to Absolute Commands hack的直接端口)执行前者,但不是后者。
How to best approximate a geometrical arc with a Bezier curve?将用于转换弧线的数学链接到béziers(每个0 < α <= π/2
弧段一个bézier段); this paper显示页面末尾的等式(其更漂亮的pdf再现在3.4.1节末尾有它。
答案 3 :(得分:1)
这是我作为“答案”所做的任何前进进展的更新日志,以帮助通知他人;如果我以某种方式自己解决问题,我会接受这个。
更新1 :我的absolute arcto命令运行正常,除非出现非均匀比例。以下是补充内容:
// Extract rotation and scale from the transform
var rotation = Math.atan2(transform.b,transform.d)*180/Math.PI;
var sx = Math.sqrt(transform.a*transform.a+transform.c*transform.c);
var sy = Math.sqrt(transform.b*transform.b+transform.d*transform.d);
//inside the processing of segments
if (seg.angle != null){
seg.angle += rotation;
// FIXME; only works for uniform scale
seg.r1 *= sx;
seg.r2 *= sy;
}
感谢this answer提取比我使用的更简单的提取方法,以及提取非均匀比例的数学。