我有一个大小为N的方形布尔矩阵M,按行存储,我想对每一列计数设置为1的位数。
例如n = 4:
1101
0101
0001
1001
M stored as { { 1,1,0,1}, {0,1,0,1}, {0,0,0,1}, {1,0,0,1} };
result = { 2, 2, 0, 4};
我显然可以
通过位操作,存在用于矩阵转置和弹出计数的良好算法。
我的问题是:是否可以将这些算法“合并”为一个算法?
请注意,对于64位架构,N可能会很大(例如1024以上)。
答案 0 :(得分:2)
我还有一个想法,我的写作还不够好。
Godbolt link to messy work-in-progress ,它没有正确的循环边界/清除功能,但是对于大型缓冲区,其运行速度比我的Skylake i7版本上@edrezen的版本快约3倍。 6700k,带有g ++ 7.3 -O3 -march = native。请参见test_SWAR_avx2
函数。 (我知道它不能在Godbolt上编译; Agner Fog的asmlib.h不存在。)
我也可能以错误的顺序排列了一些列,但是从逐步通过汇编开始,我认为它做的工作量适当。即任何必要的错误修正都不会减慢速度。
我使用了16位累加器,因此,如果您关心的输入足够大以至于溢出16位每列计数器,那么可能需要另一个外部循环。
有趣的观察:我的循环的一个较早的越野车版本在sum0123
中两次使用store_globalsums_from_vec16
,而未使用sum4567
,因此在主循环中进行了优化。用较少的工作,gcc完全展开了大的for(int i=0 ; i<5 ; i++)
循环,并且代码运行速度较慢,例如每个字节大约1个周期,而不是0.5个周期。对于uop缓存或其他东西,循环可能太大了(我尚未进行概要分析,但是前端解码瓶颈可以解释它)。由于某种原因,@ edrezen的版本对我来说仅以1.5c / B的速度运行,而不是答案中报告的〜1.25。我的CPU实际上运行的是3.9GHz,但是Agner Fog的库在4.0下可以检测到它,但这还不足以解释它。
此外,gcc将sum4567_16bit
溢出到堆栈中,因此我们已经在没有AVX512的情况下推动了寄存器压力的边界。它不经常更新,这不是问题,但是在内部循环中可能需要更多的累加器。
当列数不是32时,您的数据布局不清楚。
对于32列的每个uint32_t
块,似乎所有行都连续存储在内存中。即循环遍历某列的行是有效的。如果您有32列以上,则列32..63的行将是连续的,并排在列0..31的所有行之后。
(如果相反,如果您有一个连续行的所有列,您仍然可以使用此想法,但是可能需要将一些累加器溢出/重新加载到内存中,或者如果编译器有不错的选择,则让编译器为您完成。 )
因此,加载32字节(8 dword)向量将获得一列块的8行数据。这非常方便,它允许从1位(在内存中)扩展到2位累加器,然后在扩展到4位之前获取更多数据,依此类推,这样一来,总之就可以完成大量的工作仍然很密集。 (而不是每个字节仅向向量累加器添加1位(0或1)。)
展开的次数越多,我们可以从内存中获取更多的数据,从而更好地利用向量中的编码空间。即我们的变量具有更高的熵。每条vpaddb/w/d/q
或拆包/混洗指令都抛出更多的数据(就其所贡献的内存位而言)是一件好事。
在SIMD向量中,小于1字节的累加器基本上是一种https://en.wikipedia.org/wiki/SWAR技术,在这种情况下,您必须对移出元素边界的位进行AND运算,因为我们没有SIMD元素边界我们。 (而且我们还是避免了溢出,因此ADD携带到下一个元素中就不成问题了。)
每个内循环迭代:
使用set1(0b01010101)
对其进行掩码以获取偶数(低)位,并使用(vec>>1) & mask
(_mm256_srli_epi32(v,1)
)对其进行掩码以获取奇数(高)位。使用_mm256_add_epi8
在那些2位累加器中累加。它们不能只溢出3个,因此进位传播边界实际上并不重要。
向量的每个字节都有4个单独的垂直和,并且您有两个向量(奇/偶)。
再次重复以上操作,从内存中的3个数据向量中获得另一对向量。
再次组合以获得4个4位累加器的矢量(可能值为0..6)。当然,仍然不能在单个32位元素中混合位,因为我们绝对不能这样做。移位只能将奇/高列的位移动到包含它们的2位或4位单元的底部,因此可以将它们与在其他向量中以相同方式移动的位相加。
_mm256_unpacklo/hi_epi8
并通过掩码或shift + mask获得8位累加器
将以上内容放入运行最多5次的循环中,因此0..12累加器值上升至0..60(即使用2位余量来解压缩8位累加器,所有的编码空间。)
如果您的答案具有数据布局,那么我们可以从同一向量内的dword元素中添加数据。我们可以这样做,所以在将累加器扩展到16位时不会用完寄存器(因为x86-64仅具有16个YMM寄存器,并且我们需要一些常量)。
_mm256_unpacklo/hi_epi16
并添加,以交织成对的8位计数器,因此同一列的一组计数器已从dword扩展为qword。重复此一般想法以减少累加器分布的寄存器(或__m256i
变量)的数量。
有效地解决缺少跨行2输入字节或单词混洗的麻烦,但这只是总工作量的很小一部分。 vextracti128
/ vpaddb xmm
-> vpmovzxbw
运作良好。
答案 1 :(得分:1)
我在两种方法之间建立了一些基准:
我为这两种方法编写了一个简单的版本和一个AVX2。我对AVX2的“ transpose + popcount”方法使用了一些函数(可在stackoverflow或其他地方找到)。
在我的测试中,我假设输入是位打包格式的nbRowsx32矩阵(nbRows本身是32的倍数);因此,矩阵存储为uint32_t数组。
代码如下:
#include <cinttypes>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cassert>
#include <chrono>
#include <immintrin.h>
#include <asmlib.h>
using namespace std;
using namespace std::chrono;
// see https://stackoverflow.com/questions/24225786/fastest-way-to-unpack-32-bits-to-a-32-byte-simd-vector
static __m256i expand_bits_to_bytes (uint32_t x);
// see https://mischasan.wordpress.com/2011/10/03/the-full-sse2-bit-matrix-transpose-routine/
static void sse_trans(char const *inp, char *out);
static double deviation (double n, double sum2, double sum);
////////////////////////////////////////////////////////////////////////////////
// Naive approach (matrix transposition)
////////////////////////////////////////////////////////////////////////////////
void test_transpose_popcnt_naive (uint64_t nbRows, const uint32_t* bitmap, uint64_t* globalSums)
{
assert (nbRows%32==0);
uint8_t transpo[32][32]; memset (transpo, 0, sizeof(transpo));
for (uint64_t k=0; k<nbRows; k+=32)
{
// We unpack and transpose the input into a 32x32 bytes matrix
for (size_t row=0; row<32; row++)
{
for (size_t col=0; col<32; col++) { transpo[col][row] = (bitmap[k+row] >> col) & 1 ; }
}
for (size_t row=0; row<32; row++)
{
// We popcount the current row
u_int8_t sum=0;
for (size_t col=0; col<32; col++) { sum += transpo[row][col]; }
// We update the corresponding global sum
globalSums[row] += sum;
}
}
}
////////////////////////////////////////////////////////////////////////////////
// Naive approach (row by row)
////////////////////////////////////////////////////////////////////////////////
void test_update_row_by_row_naive (uint64_t nbRows, const uint32_t* bitmap, uint64_t* globalSums)
{
for (uint64_t row=0; row<nbRows; row++)
{
for (size_t col=0; col<32; col++)
{
globalSums[col] += (bitmap[row] >> col) & 1;
}
}
}
////////////////////////////////////////////////////////////////////////////////
// AVX2 (matrix transposition + popcount)
////////////////////////////////////////////////////////////////////////////////
void test_transpose_popcnt_avx2 (uint64_t nbRows, const uint32_t* bitmap, uint64_t* globalSums)
{
assert (nbRows%32==0);
uint32_t transpo[32];
const uint32_t* loop = bitmap;
for (uint64_t k=0; k<nbRows; loop+=32, k+=32)
{
// We transpose the input as a 32x32 bytes matrix
sse_trans ((const char*)loop, (char*)transpo);
// We update the global sums
for (size_t i=0; i<32; i++)
{
globalSums[i] += __builtin_popcount (transpo[i]);
}
}
}
////////////////////////////////////////////////////////////////////////////////
// AVX2 approach (update totals row by row)
////////////////////////////////////////////////////////////////////////////////
// Note: we use template specialization to unroll some portions of a loop
template<int N>
void UpdateLocalSums (__m256i& localSums, const uint32_t* bitmap, uint64_t& k)
{
// We update the local sums with the current row
localSums = _mm256_sub_epi8 (localSums, expand_bits_to_bytes (bitmap[k++]));
// Go recursively
UpdateLocalSums<N-1>(localSums, bitmap, k);
}
template<>
void UpdateLocalSums<0> (__m256i& localSums, const uint32_t* bitmap, uint64_t& k)
{
}
// Dillon Davis proposal: use 4 registers holding uint32_t values and update them from local sums with AVX2
#define USE_AVX2_FOR_GRAND_TOTALS 1
void test_update_row_by_row_avx2 (uint64_t nbRows, const uint32_t* bitmap, uint64_t* globalSums)
{
union U256i { __m256i v; uint8_t a[32]; uint32_t b[8]; };
// We use 1 register for updating local totals
__m256i localSums = _mm256_setzero_si256();
#ifdef USE_AVX2_FOR_GRAND_TOTALS
// Dillon Davis proposal: use 4 registers holding uint32_t values and update them from local sums with AVX2
__m256i globalSumsReg[4]; for (size_t r=0; r<4; r++) { globalSumsReg[r] = _mm256_setzero_si256(); }
#endif
uint64_t steps = nbRows / 255;
uint64_t k=0;
const int divisorOf255 = 5;
// We iterate over all rows
for (uint64_t i=0; i<steps; i++)
{
// we update the local totals (255*32=8160 additions)
for (int j=0; j<255/divisorOf255; j++)
{
// unroll some portion of the 255 loop through template specialization
UpdateLocalSums<divisorOf255>(localSums, bitmap, k);
}
#ifdef USE_AVX2_FOR_GRAND_TOTALS
// Dillon Davis proposal: use 4 registers holding uint32_t values and update them from local sums
// We take the 128 high bits of the local sums
__m256i localSums2 = _mm256_broadcastsi128_si256(_mm256_extracti128_si256(localSums,1));
globalSumsReg[0] = _mm256_add_epi32 (globalSumsReg[0],
_mm256_cvtepu8_epi32 (_mm256_castsi256_si128 (_mm256_srli_si256(localSums, 0)))
);
globalSumsReg[1] = _mm256_add_epi32 (globalSumsReg[1],
_mm256_cvtepu8_epi32 (_mm256_castsi256_si128 (_mm256_srli_si256(localSums, 8)))
);
globalSumsReg[2] = _mm256_add_epi32 (globalSumsReg[2],
_mm256_cvtepu8_epi32 (_mm256_castsi256_si128 (_mm256_srli_si256(localSums2, 0)))
);
globalSumsReg[3] = _mm256_add_epi32 (globalSumsReg[3],
_mm256_cvtepu8_epi32 (_mm256_castsi256_si128 (_mm256_srli_si256(localSums2, 8)))
);
#else
// we update the global totals
U256i tmp = { localSums };
for (size_t k=0; k<32; k++) { globalSums[k] += tmp.a[k]; }
#endif
// we reset the local totals
localSums = _mm256_setzero_si256();
}
#ifdef USE_AVX2_FOR_GRAND_TOTALS
// We update the global totals into the final uint32_t array
for (size_t r=0; r<4; r++)
{
U256i tmp = { globalSumsReg[r] };
for (size_t k=0; k<8; k++) { globalSums[r*8+k] += tmp.b[k]; }
}
#endif
// we update the remaining local totals
for (uint64_t i=steps*255; i<nbRows; i++)
{
UpdateLocalSums<1>(localSums, bitmap, k);
}
// we update the global totals
U256i tmp = { localSums };
for (size_t k=0; k<32; k++) { globalSums[k] += tmp.a[k]; }
}
////////////////////////////////////////////////////////////////////////////////
void execute (
const char* name,
void (*fct)(uint64_t nbRows, const uint32_t* bitmap, uint64_t* globalSums),
size_t nbRuns,
uint64_t nbRows,
u_int32_t* bitmap
)
{
uint64_t sums[32];
double timeTotal=0;
double cycleTotal=0;
double timeTotal2=0;
double cycleTotal2=0;
uint64_t check=0;
for (size_t n=0; n<nbRuns; n++)
{
memset(sums,0,sizeof(sums));
// We want both time and cpu cycles information
milliseconds t0 = duration_cast< milliseconds >(system_clock::now().time_since_epoch());
uint64_t c0 = ReadTSC();
// We run the test
(*fct) (nbRows, bitmap, sums);
uint64_t c1 = ReadTSC();
milliseconds t1 = duration_cast< milliseconds >(system_clock::now().time_since_epoch());
timeTotal += (t1-t0).count();
cycleTotal += (double)(c1-c0) / nbRows;
timeTotal2 += (t1-t0).count() * (t1-t0).count();
cycleTotal2 += ((double)(c1-c0) / nbRows) * ((double)(c1-c0) / nbRows);
// We compute some dummy checksum
for (size_t k=0; k<32; k++) { check += sums[k]; }
}
printf ("%-21s | %5.0lf (%5.1lf) | %5.2lf (%4.2lf) | %.3lf | 0x%lx\n",
name,
timeTotal / nbRuns,
deviation (nbRuns, timeTotal2, timeTotal),
cycleTotal/nbRuns,
deviation (nbRuns, cycleTotal2, cycleTotal),
check,
nbRows * cycleTotal / timeTotal / 1000000.0
);
}
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv)
{
// We set rows number as 2^n where n is the provided argument
// For simplification, we assume that the rows number is a multiple of 32
uint64_t nbRows = 1ULL << (argc>1 ? atoi(argv[1]) : 28);
size_t nbRuns = argc>2 ? atoi(argv[2]) : 10;
// We build an bitmap of size nbRows*32
uint32_t* bitmap = new uint32_t[nbRows];
if (bitmap==nullptr)
{
fprintf(stderr, "unable to allocate the bitmap\n");
exit(1);
}
// We fill the bitmap with random values
srand(time(nullptr));
for (uint64_t i=0; i<nbRows; i++) { bitmap[i] = rand() & 0xFFFFFFFF; }
printf ("\n");
printf ("nbRows=%ld nbRuns=%ld\n", nbRows, nbRuns);
printf ("------------------------------------------------------------------------------------------------------------\n");
printf ("name | time in msec : mean (sd) | cycles/row : mean (sd) | frequency in GHz | checksum\n");
printf ("------------------------------------------------------------------------------------------------------------\n");
// We launch the benchmark
execute ("naive (transpo) ", test_transpose_popcnt_naive, nbRuns, nbRows, bitmap);
execute ("naive (row by row)", test_update_row_by_row_naive, nbRuns, nbRows, bitmap);
execute ("AVX2 (transpo) ", test_transpose_popcnt_avx2, nbRuns, nbRows, bitmap);
execute ("AVX2 (row by row)", test_update_row_by_row_avx2, nbRuns, nbRows, bitmap);
printf ("\n");
// Some clean up
delete[] bitmap;
return EXIT_SUCCESS;
}
////////////////////////////////////////////////////////////////////////////////
__m256i expand_bits_to_bytes(uint32_t x)
{
__m256i xbcast = _mm256_set1_epi32(x);
// Each byte gets the source byte containing the corresponding bit
__m256i shufmask = _mm256_set_epi64x(
0x0303030303030303, 0x0202020202020202,
0x0101010101010101, 0x0000000000000000);
__m256i shuf = _mm256_shuffle_epi8(xbcast, shufmask);
__m256i andmask = _mm256_set1_epi64x(0x8040201008040201); // every 8 bits -> 8 bytes, pattern repeats.
__m256i isolated_inverted = _mm256_and_si256(shuf, andmask);
// Avoid an _mm256_add_epi8 thanks to Peter Cordes's comment
return _mm256_cmpeq_epi8(isolated_inverted, andmask);
}
////////////////////////////////////////////////////////////////////////////////
void sse_trans(char const *inp, char *out)
{
#define INP(x,y) inp[(x)*4 + (y)/8]
#define OUT(x,y) out[(y)*4 + (x)/8]
int rr, cc, i, h;
union { __m256i x; uint8_t b[32]; } tmp;
for (cc = 0; cc < 32; cc += 8)
{
for (i = 0; i < 32; ++i)
tmp.b[i] = INP(i, cc);
for (i = 8; i--; tmp.x = _mm256_slli_epi64(tmp.x, 1))
*(uint32_t*)&OUT(0, cc + i) = _mm256_movemask_epi8(tmp.x);
}
}
////////////////////////////////////////////////////////////////////////////////
double deviation (double n, double sum2, double sum) { return sqrt (sum2/n - (sum/n)*(sum/n)); }
一些评论:
g++ -O3 -march=native ../Test.cpp -o ./Test -laelf64
现在结果:
------------------------------------------------------------------------------------------------------------
name | time in msec : mean (sd) | cycles/row : mean (sd) | frequency in GHz | checksum
------------------------------------------------------------------------------------------------------------
naive (transpo) | 4548 ( 36.5) | 43.91 (0.35) | 2.592 | 0x9affeb5a6
naive (row by row) | 3033 ( 11.0) | 29.29 (0.11) | 2.592 | 0x9affeb5a6
AVX2 (transpo) | 767 ( 12.8) | 7.40 (0.12) | 2.592 | 0x9affeb5a6
AVX2 (row by row) | 130 ( 4.0) | 1.25 (0.04) | 2.591 | 0x9affeb5a6
因此,到目前为止,AVX2中的“逐行”似乎是最好的。
请注意,当我看到此结果(每行少于2个周期)时,我没有做出更多努力来优化AVX2的“ transpose + popcount”方法,该方法可以通过并行计算多个popcount来实现(我可以对其进行测试)稍后)。
答案 2 :(得分:0)
我最终根据Peter Cordes提出的高熵SWAR方法编写了另一种实现。此实现是递归的,并且依赖于C ++模板专业化。
全局思想是将N位累加器填充到最大,而不会产生进位溢出(使用递归的地方)。当这些累加器被填充后,我们将更新总计,然后从新的N位累加器开始填充,直到所有行都被处理为止。
这是代码(请参见功能test_SWAR_recursive
):
#include <immintrin.h>
#include <cassert>
#include <chrono>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std;
using namespace std::chrono;
// avoid the #include <asmlib.h>
extern "C" u_int64_t ReadTSC();
static double deviation (double n, double sum2, double sum) { return sqrt (sum2/n - (sum/n)*(sum/n)); }
////////////////////////////////////////////////////////////////////////////////
// Recursive SWAR approach (with template specialization)
////////////////////////////////////////////////////////////////////////////////
template<int DEPTH>
struct RecursiveSWAR
{
// Number of accumulators for current depth
static const int N = 1<<DEPTH;
// Array of N-bit accumulators
typedef __m256i Array[N];
// Magic numbers (0x55555555, 0x33333333, ...) computed recursively
static const u_int32_t MAGIC_NUMBER =
RecursiveSWAR<DEPTH-1>::MAGIC_NUMBER
* (1 + (1<<(1<<(DEPTH-1))))
/ (1 + (1<<(1<<(DEPTH+0))));
static void fillAccumulators (u_int32_t*& begin, const u_int32_t* end, Array accumulators)
{
// We reset the N-bit accumulators
for (int i=0; i<N; i++) { accumulators[i] = _mm256_setzero_si256(); }
// We check (only for depth big enough) that we have still rows to process
if (DEPTH>=3) if (begin>=end) { return; }
typename RecursiveSWAR<DEPTH-1>::Array accumulatorsMinusOne;
// We load a register with the mask
__m256i mask = _mm256_set1_epi32 (RecursiveSWAR<DEPTH-1>::MAGIC_NUMBER);
// We fill the N-bit accumulators to their maximum capacity without carry overflow
for (int i=0; i<N+1; i++)
{
// We fill (N-1)-bit accumulators recursively
RecursiveSWAR<DEPTH-1>::fillAccumulators (begin, end, accumulatorsMinusOne);
// We update the N-bit accumulators from the (N-1)-bit accumulators
for (int j=0; j<RecursiveSWAR<DEPTH-1>::N; j++)
{
// LOW part
accumulators[2*j+0] = _mm256_add_epi32 (
accumulators[2*j+0],
_mm256_and_si256 (
accumulatorsMinusOne[j],
mask
)
);
// HIGH part
accumulators[2*j+1] = _mm256_add_epi32 (
accumulators[2*j+1],
_mm256_and_si256 (
_mm256_srli_epi32 (
accumulatorsMinusOne[j],
RecursiveSWAR<DEPTH-1>::N
),
mask
)
);
}
}
}
};
// Template specialization for DEPTH=0
template<>
struct RecursiveSWAR<0>
{
static const int N = 1;
typedef __m256i Array[N];
static const u_int32_t MAGIC_NUMBER = 0x55555555;
static void fillAccumulators (u_int32_t*& begin, const u_int32_t* end, Array result)
{
// We just load 8 rows in the AVX2 register
result[0] = _mm256_loadu_si256 ((__m256i*)begin);
// We update the iterator
begin += 1*sizeof(__m256i)/sizeof(u_int32_t);
}
};
template<int DEPTH> struct TypeInfo { };
template<> struct TypeInfo<3> { typedef u_int8_t Type; };
template<> struct TypeInfo<4> { typedef u_int16_t Type; };
template<> struct TypeInfo<5> { typedef u_int32_t Type; };
unsigned char reversebits (unsigned char b)
{
return ((b * 0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32;
}
void test_SWAR_recursive (uint64_t nbRows, const uint32_t* bitmap, uint32_t* globalSums)
{
static const int DEPTH = 4;
RecursiveSWAR<DEPTH>::Array accumulators;
uint32_t* begin = (uint32_t*) bitmap;
const uint32_t* end = bitmap + nbRows;
// We reset the grand totals
for (int i=0; i<32; i++) { globalSums[i] = 0; }
while (begin < end)
{
// We fill the N-bit accumulators to the maximum without overflow
RecursiveSWAR<DEPTH>::fillAccumulators (begin, end, accumulators);
// We update grand totals from the filled N-bit accumulators
for (int i=0; i<RecursiveSWAR<DEPTH>::N; i++)
{
int r = reversebits(i) >> (8-DEPTH);
u_int32_t* sums = globalSums+r;
TypeInfo<DEPTH>::Type* values = (TypeInfo<DEPTH>::Type*) (accumulators+i);
for (int j=0; j<8*(1<<(5-DEPTH)); j++)
{
sums[(j*RecursiveSWAR<DEPTH>::N) % 32] += values[j];
}
}
}
}
////////////////////////////////////////////////////////////////////////////////
void execute (
const char* name,
void (*fct)(uint64_t nbRows, const uint32_t* bitmap, uint32_t* globalSums),
size_t nbRuns,
uint64_t nbRows,
u_int32_t* bitmap
)
{
uint32_t sums[32];
double timeTotal=0;
double cycleTotal=0;
double timeTotal2=0;
double cycleTotal2=0;
uint64_t check=0;
for (size_t n=0; n<nbRuns; n++)
{
memset(sums,0,sizeof(sums));
// We want both time and cpu cycles information
milliseconds t0 = duration_cast< milliseconds >(system_clock::now().time_since_epoch());
uint64_t c0 = ReadTSC();
// We run the test
(*fct) (nbRows, bitmap, sums);
uint64_t c1 = ReadTSC();
milliseconds t1 = duration_cast< milliseconds >(system_clock::now().time_since_epoch());
timeTotal += (t1-t0).count();
cycleTotal += (double)(c1-c0) / nbRows;
timeTotal2 += (t1-t0).count() * (t1-t0).count();
cycleTotal2 += ((double)(c1-c0) / nbRows) * ((double)(c1-c0) / nbRows);
// We compute some dummy checksum
for (size_t k=0; k<32; k++) { check += (k+1)*sums[k]; }
}
printf ("%-21s | %5.0lf (%5.1lf) | %5.2lf (%5.3lf) | %.3lf | 0x%lx\n",
name,
timeTotal / nbRuns,
deviation (nbRuns, timeTotal2, timeTotal),
cycleTotal/nbRuns,
deviation (nbRuns, cycleTotal2, cycleTotal),
nbRows * cycleTotal / timeTotal / 1000000.0,
check/nbRuns
);
}
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv)
{
// We set rows number as 2^n where n is the provided argument
// For simplification, we assume that the rows number is a multiple of 32
uint64_t nbRows = 1ULL << (argc>1 ? atoi(argv[1]) : 28);
size_t nbRuns = argc>2 ? atoi(argv[2]) : 10;
// We build an bitmap of size nbRows*32
uint64_t actualNbRows = nbRows + 100000;
uint32_t* bitmap = (uint32_t*)_mm_malloc(sizeof(uint32_t)*actualNbRows, 256);
if (bitmap==nullptr)
{
fprintf(stderr, "unable to allocate the bitmap\n");
exit(1);
}
memset (bitmap, 0, sizeof(u_int32_t)*actualNbRows);
// We fill the bitmap with random values
// srand(time(nullptr));
for (uint64_t i=0; i<nbRows; i++) { bitmap[i] = rand() & 0xFFFFFFFF; }
printf ("\n");
printf ("nbRows=%ld nbRuns=%ld\n", nbRows, nbRuns);
printf ("------------------------------------------------------------------------------------------------------------\n");
printf ("name | time in msec : mean (sd) | cycles/row : mean (sd) | frequency in GHz | checksum\n");
printf ("------------------------------------------------------------------------------------------------------------\n");
// We launch the benchmark
execute ("AVX2 (SWAR rec) ", test_SWAR_recursive, nbRuns, nbRows, bitmap);
printf ("\n");
// Some clean up
_mm_free (bitmap);
return EXIT_SUCCESS;
}
在此代码中,累加器的大小为2 ^ DEPTH。请注意,此实现在DEPTH = 5之前有效。对于DEPTH = 4,这是与Peter Cordes(称为高熵SWAR)的实现相比的性能结果:
该图给出了处理一行(共32个项目)所需的周期数,该周期数是矩阵行数的函数。正如预期的那样,由于主要思想相同,因此结果非常相似。注意图的三个部分很有趣:
我想CPU缓存属性可以解释这种现象。