我使用第一个示例here作为网络示例。
当损失达到固定值时如何停止训练?
例如,我想修复最多3000个纪元,并且当损失小于0.2时,培训将停止。
我读了topic,但这不是我找到的解决方法。
我希望在损失达到一定值时停止训练,而不是像先前主题中的this function那样没有任何改善时停止训练。
代码如下:
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.optimizers import SGD
# Generate dummy data
import numpy as np
x_train = np.random.random((1000, 20))
y_train = keras.utils.to_categorical(np.random.randint(10, size=(1000, 1)), num_classes=10)
x_test = np.random.random((100, 20))
y_test = keras.utils.to_categorical(np.random.randint(10, size=(100, 1)), num_classes=10)
model = Sequential()
# Dense(64) is a fully-connected layer with 64 hidden units.
# in the first layer, you must specify the expected input data shape:
# here, 20-dimensional vectors.
model.add(Dense(64, activation='relu', input_dim=20))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy',
optimizer=sgd,
metrics=['accuracy'])
model.fit(x_train, y_train,
epochs=3000,
batch_size=128)
score = model.evaluate(x_test, y_test, batch_size=128)
答案 0 :(得分:0)
此处的文档:EarlyStopping
keras.callbacks.EarlyStopping(monitor='val_loss', min_delta=0, patience=0, verbose=0, mode='auto', baseline=None)
答案 1 :(得分:0)
如果要切换到TensorFlow 2.0,可以使用类似这样的方法:
class haltCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs={}):
if(logs.get('loss') <= 0.05):
print("\n\n\nReached 0.05 loss value so cancelling training!\n\n\n")
self.model.stop_training = True
您只需要创建一个这样的回调,然后将该回调添加到您的model.fit中,这样它就会变成这样:
model.fit(x_train, y_train,
epochs=3000,
batch_size=128,
callbacks=['trainingStopCallback'])
通过这种方式,只要拟合下降到0.05以下(或定义时输入的任何值),都应停止拟合。
此外,由于您已经问了很长时间了,但是对于将其与TensorFlow 2.0结合使用仍然没有实际答案,因此我将您的代码段更新为TensorFlow 2.0,这样每个人现在都可以轻松地在新项目中查找和使用它
import tensorflow as tf
# Generate dummy data
import numpy as np
x_train = np.random.random((1000, 20))
y_train = tf.keras.utils.to_categorical(
np.random.randint(10, size=(1000, 1)), num_classes=10)
x_test = np.random.random((100, 20))
y_test = tf.keras.utils.to_categorical(
np.random.randint(10, size=(100, 1)), num_classes=10)
model = tf.keras.models.Sequential()
# Dense(64) is a fully-connected layer with 64 hidden units.
# in the first layer, you must specify the expected input data shape:
# here, 20-dimensional vectors.
model.add(tf.keras.layers.Dense(64, activation='relu', input_dim=20))
model.add(tf.keras.layers.Dropout(0.5))
model.add(tf.keras.layers.Dense(64, activation='relu'))
model.add(tf.keras.layers.Dropout(0.5))
model.add(tf.keras.layers.Dense(10, activation='softmax'))
class haltCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs={}):
if(logs.get('loss') <= 0.05):
print("\n\n\nReached 0.05 loss value so cancelling training!\n\n\n")
self.model.stop_training = True
trainingStopCallback = haltCallback()
sgd = tf.keras.optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy',
optimizer=sgd,
metrics=['accuracy', 'loss'])
model.fit(x_train, y_train,
epochs=3000,
batch_size=128,
callbacks=['trainingStopCallback'])
score = model.evaluate(x_test, y_test, batch_size=128)