OpenAI体育馆的Lunar Lander模型无法收敛

时间:2018-07-19 14:48:43

标签: neural-network keras deep-learning reinforcement-learning q-learning

我正在尝试对喀拉拉邦进行深度强化学习,以训练特工学习如何玩Lunar Lander OpenAI gym environment。问题是我的模型没有收敛。这是我的代码:

import numpy as np
import gym

from keras.models import Sequential
from keras.layers import Dense
from keras import optimizers

def get_random_action(epsilon):
    return np.random.rand(1) < epsilon

def get_reward_prediction(q, a):
    qs_a = np.concatenate((q, table[a]), axis=0)
    x = np.zeros(shape=(1, environment_parameters + num_of_possible_actions))
    x[0] = qs_a
    guess = model.predict(x[0].reshape(1, x.shape[1]))
    r = guess[0][0]
    return r

results = []
epsilon = 0.05
alpha = 0.003
gamma = 0.3
environment_parameters = 8
num_of_possible_actions = 4
obs = 15
mem_max = 100000
epochs = 3
total_episodes = 15000

possible_actions = np.arange(0, num_of_possible_actions)
table = np.zeros((num_of_possible_actions, num_of_possible_actions))
table[np.arange(num_of_possible_actions), possible_actions] = 1

env = gym.make('LunarLander-v2')
env.reset()

i_x = np.random.random((5, environment_parameters + num_of_possible_actions))
i_y = np.random.random((5, 1))

model = Sequential()
model.add(Dense(512, activation='relu', input_dim=i_x.shape[1]))
model.add(Dense(i_y.shape[1]))

opt = optimizers.adam(lr=alpha)

model.compile(loss='mse', optimizer=opt, metrics=['accuracy'])

total_steps = 0
i_x = np.zeros(shape=(1, environment_parameters + num_of_possible_actions))
i_y = np.zeros(shape=(1, 1))

mem_x = np.zeros(shape=(1, environment_parameters + num_of_possible_actions))
mem_y = np.zeros(shape=(1, 1))
max_steps = 40000

for episode in range(total_episodes):
    g_x = np.zeros(shape=(1, environment_parameters + num_of_possible_actions))
    g_y = np.zeros(shape=(1, 1))
    q_t = env.reset()
    episode_reward = 0

    for step_number in range(max_steps):
        if episode < obs:
            a = env.action_space.sample()
        else:
            if get_random_action(epsilon, total_episodes, episode):
                a = env.action_space.sample()
            else:
                actions = np.zeros(shape=num_of_possible_actions)

                for i in range(4):
                    actions[i] = get_reward_prediction(q_t, i)

                a = np.argmax(actions)

        # env.render()
        qa = np.concatenate((q_t, table[a]), axis=0)

        s, r, episode_complete, data = env.step(a)
        episode_reward += r

        if step_number is 0:
            g_x[0] = qa
            g_y[0] = np.array([r])
            mem_x[0] = qa
            mem_y[0] = np.array([r])

        g_x = np.vstack((g_x, qa))
        g_y = np.vstack((g_y, np.array([r])))

        if episode_complete:
            for i in range(0, g_y.shape[0]):
                if i is 0:
                    g_y[(g_y.shape[0] - 1) - i][0] = g_y[(g_y.shape[0] - 1) - i][0]
                else:
                    g_y[(g_y.shape[0] - 1) - i][0] = g_y[(g_y.shape[0] - 1) - i][0] + gamma * g_y[(g_y.shape[0] - 1) - i + 1][0]

            if mem_x.shape[0] is 1:
                mem_x = g_x
                mem_y = g_y
            else:
                mem_x = np.concatenate((mem_x, g_x), axis=0)
                mem_y = np.concatenate((mem_y, g_y), axis=0)

            if np.alen(mem_x) >= mem_max:
                for l in range(np.alen(g_x)):
                    mem_x = np.delete(mem_x, 0, axis=0)
                    mem_y = np.delete(mem_y, 0, axis=0)

        q_t = s

        if episode_complete and episode >= obs:
            if episode%10 == 0:
                model.fit(mem_x, mem_y, batch_size=32, epochs=epochs, verbose=0)

        if episode_complete:
            results.append(episode_reward)
            break

我正在播放成千上万集,但我的模型仍然无法收敛。它将开始减少〜5000个情节的平均政策变化,同时增加平均奖励,但此举超出了预期的范围,此后平均每个情节的平均奖励下降。我已经尝试过弄乱超参数,但是我还没弄清楚。我正在尝试在DeepMind DQN paper之后对我的代码进行建模。

2 个答案:

答案 0 :(得分:1)

您可能想更改get_random_action函数,以使每个情节衰减epsilon。毕竟,假设您的代理可以学习最佳策略,那么在某些时候您根本就不会采取随机措施,对吗?这是get_random_action的稍有不同的版本,可以为您完成此操作:

def get_random_action(epsilon, total_episodes, episode):
        explore_prob = epsilon - (epsilon * (episode / total_episodes))
        return np.random.rand(1) < explore_prob

在此功能的修改版本中,epsilon随每个情节而略有减少。这可以帮助您的模型收敛。

有几种衰减参数的方法。有关更多信息,请查看this Wikipedia article

答案 1 :(得分:1)

我最近成功实现了此目的。 https://github.com/tianchuliang/techblog/tree/master/OpenAIGym

基本上,我让代理随机运行3000帧,同时收集这些数据作为初始训练数据(状态)和标签(奖励),然后,我每100帧训练我的神经网络模型,并让模型做出关于什么动作可以取得最佳成绩。

请参阅我的github,它可能会有所帮助。哦,我的训练课程也在YouTube上,https://www.youtube.com/watch?v=wrrr90Pevuw https://www.youtube.com/watch?v=TJzKbFAlKa0 https://www.youtube.com/watch?v=y91uA_cDGGs