我有一个具有唯一ID和少量属性的数据集。我在Python中执行了k-d树,以获取三个最近邻居的每个id的索引,如下图所示:
上图中的“索引”是Pandas数据框随附的默认索引。我希望输出的格式如下图所示:
这可以使用vlookup在excel中轻松完成,但是如何在Python中做到这一点?
答案 0 :(得分:2)
在Serie
s中使用replace
:
df = df.replace(df['id'])
#or convert to dict (first solution)
#df = df.replace(df['id'].to_dict())
print (df)
id neighborl neighbor2 neighbor3
0 u1 u1 u4 u3
1 u2 u2 u3 u2
2 u3 u3 u1 u2
3 u4 u4 u1 u2
另一种解决方案:
cols = ['neighbor1', 'neighbor2', 'neighbor3']
df[cols] = df[cols].applymap(df['id'].to_dict().get)
print (df)
id neighbor1 neighbor2 neighbor3
0 u1 u1 u4 u3
1 u2 u2 u3 u2
2 u3 u3 u1 u2
3 u4 u4 u1 u2
如果需要更多动态解决方案:
#select columns starting by neighbor
cols = df.filter(regex='^neighbor').columns
print (cols)
Index(['neighbor1', 'neighbor2', 'neighbor3'], dtype='object')
df[cols] = df[cols].replace(df['id'])
print (df)
id neighbor1 neighbor2 neighbor3
0 u1 u1 u4 u3
1 u2 u2 u3 u2
2 u3 u3 u1 u2
3 u4 u4 u1 u2
#create mask by columns names starting by neighbor
mask = df.columns.str.startswith('neighbor')
print (mask)
[False True True True]
df.loc[:, mask] = df.loc[:, mask].replace(df['id'])
print (df)
id neighbor1 neighbor2 neighbor3
0 u1 u1 u4 u3
1 u2 u2 u3 u2
2 u3 u3 u1 u2
3 u4 u4 u1 u2
答案 1 :(得分:1)
使用
In [289]: cols = ['neighbor1', 'neighbor2', 'neighbor3']
In [290]: df[cols].replace(df.set_index('index')['id'].to_dict())
Out[290]:
neighbor1 neighbor2 neighbor3
0 u1 u4 u3
1 u2 u3 u2
2 u3 u1 u2
3 u4 u1 u2
In [291]: df[cols] = df[cols].replace(df.set_index('index')['id'].to_dict())
In [292]: df
Out[292]:
index id neighbor1 neighbor2 neighbor3
0 0 u1 u1 u4 u3
1 1 u2 u2 u3 u2
2 2 u3 u3 u1 u2
3 3 u4 u4 u1 u2
答案 2 :(得分:1)
尝试一下,
print df.replace(df['id'].to_dict())
输入:
id neighbor1 neighbor2 neighbor3
index
0 u1 0 3 2
1 u2 1 2 1
2 u3 2 0 1
3 u4 3 0 1
输出:
id neighbor1 neighbor2 neighbor3
index
0 u1 u1 u4 u3
1 u2 u2 u3 u2
2 u3 u3 u1 u2
3 u4 u4 u1 u2
答案 3 :(得分:1)
import numpy as np
import matplotlib.pyplot as plt
import sympy # for evaluating number of primes <= n
def f(n):
arr = []
for i in range(1,n+1):
arr.append(sympy.primepi(i))
#print('For',i, 'value', arr[i-1])
return arr
ar = f(100)
t1 = np.arange(1,101,1,dtype = int)
plt.plot(t1, ar ,'bo') # instead of 'bo' what I need to use to make it like 1st picture?
plt.axis([0,110,0,25])
plt.show()