我想根据热图上的用户点击输入来绘制折线图。我能够做到,但是y轴的排列不正确并且太拥挤了。按下绘图按钮后,将出现热图,并且当按下热图上的一个点时,与热图中特定列相对应的数据将以线形图的形式绘制在其下方。折线图看起来像
但是您可以看到y轴杂乱无章,拥挤不堪。所以我想打破它并施加一些限制。
我的代码是
awk
错误位于
中perl
什么是错误。我的电脑出现类似
的错误 Comp_name <- c("Dum1")
Inc <- c(175.26,175.365,175.65,176.65,176.165,176.1685,175.56)
Exp <- c(175.48,174.53,174.165,173.1651,175.651,174.16541,176.65)
Date <- c(2018-06-01,2018-06-02,2018-06-03,2018-06-04,2018-06-05,2018-06-06,2018-06-07)
Dates <- c(2018-06-01,2018-06-02,2018-06-03,2018-06-04,2018-06-05,2018-06-06,2018-06-07)
Dummy1 <- as.data.frame(cbind(Comp_name,Inc,Exp,Date,Dates))
Comp_name1 <- c("Dum2")
Inc1 <- c(151.26,151.59,151.23,152.46,152.49,151.29,150.81)
Exp1 <- c(152.64,152.84,152.64,152.48,152.35,154.26,153.14)
Date1 <- c(2018-06-01,2018-06-02,2018-06-03,2018-06-04,2018-06-05,2018-06-06,2018-06-07)
Dates1 <- c(2018-06-01,2018-06-02,2018-06-03,2018-06-04,2018-06-05,2018-06-06,2018-06-07)
Dummy2 <- as.data.frame(cbind(Comp_name1,Inc1,Exp1,Date1,Dates1))
Comp_name2 <- c("Dum3")
Inc2 <- c(160.45,161.25,163.56,165.25,163.59,160.89,161.26)
Exp2 <- c(160.19,160.78,162.15,164.89,165.24,163.25,162.48)
Date2 <- c(2018-06-01,2018-06-02,2018-06-03,2018-06-04,2018-06-05,2018-06-06,2018-06-07)
Dates2 <- c(2018-06-01,2018-06-02,2018-06-03,2018-06-04,2018-06-05,2018-06-06,2018-06-07)
Dummy3 <- as.data.frame(cbind(Comp_name2,Inc2,Exp2,Date2,Dates2))
Comp_name3 <- c("Dum4")
Inc3 <- c(156.26,155.12,157.12,158.78,154.26,160.12,161.26)
Exp3 <- c(160.19,160.19,155.19,154.26,150.12,157.26,159.12)
Date3 <- c(2018-06-01,2018-06-02,2018-06-03,2018-06-04,2018-06-05,2018-06-06,2018-06-07)
Dates3 <- c(2018-06-01,2018-06-02,2018-06-03,2018-06-04,2018-06-05,2018-06-06,2018-06-07)
Dummy4 <- as.data.frame(cbind(Comp_name3,Inc3,Exp3,Date3,Dates3))
Data <- cbind(Dummy1,Dummy2,Dummy3,Dummy4)
Data <- as.data.frame(Data)
library(shiny)
ui <- fluidPage(
sidebarLayout(
sidebarPanel(),
mainPanel(selectInput("ploth","Heatmap", "Plot Heatmap Of", choices =c("Income" = "inc2",
"Expenditure" = "exp2",
"Gross Profit" = "gprofit2",
"Net Profit" = "nprofit2")),
actionButton("hplotit","Plot Heatmap"),
plotlyOutput("HeatPlot"),
plotlyOutput("Next")
) ))
server <- function(input,output,session) {
observeEvent(input$hplotit, {
inc1 <- as.data.frame(cbind(Dummy1 = Data[,2],Dummy2 = Data[,7],
Dummy3 = Data[,12], Dummy4 = Data[,17]))
inc2 <- as.matrix(inc1)
exp1 <- as.data.frame(cbind(Dummy1 = Data[,3],Dummy2 = Data[,8],
Dummy3 = Data[,13], Dummy4 = Data[,18]))
exp2 <- as.matrix(exp1)
gprofit1 <- as.data.frame(cbind(Dummy1 = Data[,3] - Data[,2],
Dummy2 = Data[,8] - Data[,7],
Dummy3 = Data[,13] - Data[,12],
Dummy4 = Data[,18] - Data[,17]))
gprofit2 <- as.matrix(gprofit1)
nprofit1 <- as.data.frame(cbind(Dummy1 = (Data[,3] - Data[,2]) - ((Data[,3] - Data[,2]) * 0.06),
Dummy2 = (Data[,8] - Data[,7]) - ((Data[,8] - Data[,7]) * 0.10),
Dummy3 = (Data[,13] - Data[,12]) - ((Data[,13] - Data[,12]) * 0.18),
Dummy4 = (Data[,18] - Data[,17]) - ((Data[,18] - Data[,17]) * 0.22)))
nprofit2 <- as.matrix(nprofit1)
date <- as.character(Data[,4])
h <- input$ploth
switch(EXPR = h ,
inc2 = output$HeatPlot <- renderPlotly( plot_ly(x = colnames(inc2), y = date,
z = inc2, type = "heatmap",
colorscale = "Earth")),
exp2 = output$HeatPlot <- renderPlotly( plot_ly(x = colnames(exp2), y = date,
z = exp2, type = "heatmap",
colors = colorRamp(c("red",
"yellow")))),
gprofit2 = output$HeatPlot <- renderPlotly( plot_ly(x = colnames(gprofit2),
y = date, z = gprofit2,
type = "heatmap",
colorscale="Greys")),
nprofit2 = output$HeatPlot <- renderPlotly( plot_ly(x = colnames(nprofit2),
y = date, z = nprofit2,
type = "heatmap"))
)
})
output$Next <- renderPlotly({
event.data <- event_data(event = "plotly_click")[["x"]]
vars <- as.character(event.data)
dateof <- event_data(event = "plotly_click")[["y"]]
dates <- as.character(dateof)
value <- event_data(event = "plotly_click")[["z"]]
values <- as.character(value)
inc1 <- as.data.frame(cbind(Dummy1 = Data[,2],Dummy2 = Data[,7],
Dummy3 = Data[,12], Dummy4 = Data[,17]))
inc2 <- as.matrix(inc1)
exp1 <- as.data.frame(cbind(Dummy1 = Data[,3],Dummy2 = Data[,8],
Dummy3 = Data[,13], Dummy4 = Data[,18]))
exp2 <- as.matrix(exp1)
gprofit1 <- as.data.frame(cbind(Dummy1 = round(Data[,3] - Data[,2],2),
Dummy2 = round(Data[,8] - Data[,7],2),
Dummy3 = round(Data[,13] - Data[,12],2),
Dummy4 = round(Data[,18] - Data[,17],2)))
gprofit2 <- as.matrix(gprofit1)
nprofit1 <- as.data.frame(cbind(Dummy1 = round((Data[,3] - Data[,2]) - ((Data[,3] - Data[,2]) * 0.06),2),
Dummy2 = round((Data[,8] - Data[,7]) - ((Data[,8] - Data[,7]) * 0.10),2),
Dummy3 = round((Data[,13] - Data[,12]) - ((Data[,13] - Data[,12]) * 0.18),2),
Dummy4 = round((Data[,18] - Data[,17]) - ((Data[,18] - Data[,17]) * 0.22),2)))
nprofit2 <- as.matrix(nprofit1)
h <- input$ploth
did <- cbind(Date = (as.character(Data[,4])),get(h))
mini <- as.numeric(min(levels(Data[,vars]))) - 1
maxi <- as.numeric(max(levels(Data[,vars]))) + 1
if(is.null(event.data)) NULL else ggplotly(ggplot(as.data.frame(did[,vars])) +
geom_line(aes(x = Data[,4], y = did[,vars], group = 1 ), stat = "identity", col = "blue")+
geom_point(aes(x = Data[,4], y = did[,vars]), stat = "identity", col = ifelse(Data[,4] == dates, "green", "darkmagenta"))+
theme(axis.text.x = element_text(angle = 90))+ xlab("Dates")+ylab("(in lakhs)")+
scale_y_continuous(limits = c(mini,maxi), breaks = seq(mini,maxi,1)))
})
}
}
# Run the application
shinyApp(ui = ui, server = server)
或
mini <- as.numeric(min(levels(Data[,vars]))) - 1
maxi <- as.numeric(max(levels(Data[,vars]))) + 1
if(is.null(event.data)) NULL else ggplotly(ggplot(as.data.frame(did[,vars])) +
geom_line(aes(x = Data[,4], y = did[,vars], group = 1 ), stat = "identity", col = "blue")+
geom_point(aes(x = Data[,4], y = did[,vars]), stat = "identity", col = ifelse(Data[,4] == dates, "green", "darkmagenta"))+
theme(axis.text.x = element_text(angle = 90))+ xlab("Dates")+ylab("(in lakhs)")+
scale_y_continuous(limits = c(mini,maxi), breaks = seq(mini,maxi,1)))
请帮助。谢谢。
这不是上一个问题的重复,因为对实际代码进行了略微更改以产生最小的可重复代码。实际的代码具有file.choose()函数,然后执行了cbind将其全部放入一个更大的数据帧中。那么有没有一种方法可以解决这个问题而不删除cbind函数呢?
答案 0 :(得分:0)
您使用cbind
是这里的问题。因为您的“日期”列包含非数字字符(破折号),所以cbind
将每一列转换为字符数据类型,这会导致出现打印问题。 cbind
希望每一列都具有相同的类型,而data.frame
支持异构类型的列。
例如,创建Dummy1
的行应为:
Dummy1 <- as.data.frame(Comp_name,Inc,Exp,Date,Dates)
您的Data
对象可能应该是一个列表。