R-多项式逻辑回归的解释

时间:2018-07-16 20:01:31

标签: r statistics logistic-regression

我使用一组分类变量运行了多项逻辑回归:

自变量:

特征1:是,否,未知。

特征2:是,否,未知。

因变量:

answer:是,否。

> data1$answer <- relevel(data1$answer1, ref="Yes")
> test <- multinom(answer ~ characteristic1 + characteristic3, data = data1)
> summary(test)
Call:
multinom(formula = answer ~ characteristic1 + characteristic2, data = data1)

Coefficients:
                        Values    Std. Err.
(Intercept)         13.2201602 5.250578e+02
characteristic1Unknown  -0.5725031 6.159256e+02
characteristic1Yes       5.0148322 2.529555e-14
characteristic2Unknown   -11.2613522 3.219936e+02
characteristic2Yes         1.6884884 1.336704e+03

Residual Deviance: 5.004052 
AIC: 15.00405 

> p
       (Intercept) characteristic1Unknown     characteristic1Yes   characteristic2Unknown 
         0.9799126          0.9992584          0.0000000          0.9721006 
      characteristic2Yes 
         0.9989921 
> exp(coef(test));exp(confint(test))
       (Intercept) characteristic1Unknown     characteristic1Yes   characteristic2Unknown 
      5.513693e+05       5.641116e-01       1.506309e+02       1.286047e-05 
     characteristic2Yes 
      5.411295e+00 
                           2.5 %        97.5 %
(Intercept)         0.000000e+00           Inf
characteristic1Unknown  0.000000e+00           Inf
characteristic1Yes      1.506309e+02  1.506309e+02
characteristic2Unknown   1.066145e-279 1.551306e+269
characteristic2Yes        0.000000e+00           Inf

我将其解释为答案变量从特征1:否更改为是时对答案变量具有否与是的对数赔率将增加5.04。

但是,当我运行其他睾丸时,将特征2变量更改为特征3时,特征1具有其他值:

自变量:

特征1:是,否,未知。

特征3:是,否,未知。

因变量:

answer:是,否。

> data1$answer <- relevel(data1$answer1, ref="Yes")
> test <- multinom(answer ~ characteristic1 + characteristic3, data = data1)
> summary(test)
Call:
multinom(formula = answer ~ characteristic1 + characteristic3, data = data1)

Coefficients:
                      Values Std. Err.
(Intercept)        11.332554  204.3257
characteristic1Unknown -9.540773  204.3286
characteristic1Yes      6.340292    0.0000
characteristic3Unknown 10.680659  361.2806
characteristic3Yes      1.042372    0.0000

Residual Deviance: 5.741692 
AIC: 15.74169 
> p
       (Intercept) characteristic1Unknown     characteristic1Yes characteristic3Unknown 
         0.9557695          0.9627577          0.0000000          0.9764153 
    characteristic3Yes 
         0.0000000 
> exp(coef(test));exp(confint(test))
       (Intercept) characteristic1Unknown     characteristic1Yes characteristic3Unknown 
      8.349599e+04       7.186130e-05       5.669619e+02       4.350622e+04 
    characteristic3Yes 
      2.835937e+00 
                           2.5 %        97.5 %
(Intercept)        9.984058e-170 6.982712e+178
characteristic1Unknown 8.544889e-179 6.043433e+169
characteristic1Yes      5.669619e+02  5.669619e+02
characteristic3Unknown 1.306052e-303           Inf
characteristic3Yes      2.835937e+00  2.835937e+00

我的问题是,如果变量答案的对数几率与变量特征1有关,那么当我将变量特征2更改为特征3时,为什么在这两个测试之间会发生变化?

请帮助!

0 个答案:

没有答案