我有两个数据框,它们的公用列名为“ upc”,例如:
df1:
upc
23456793749
78907809834
35894796324
67382808404
93743008374
df2:
upc
4567937
9078098
8947963
3828084
7430083
请注意,df2'upc'值是df1'upc'值的最里面的7个值。 请注意,df1和df2都有上面未显示的其他列。 我想做的是对'upc'进行内部合并,但仅对最里面的7个值进行合并。我该如何实现?
答案 0 :(得分:3)
使用str.extact
,将df1中的所有项目与df2匹配,然后将结果用作与df2的merge
键merge
df1['keyfordf2']=df1.astype(str).upc.str.extract(r'({})'.format('|'.join(df2.upc.astype(str).tolist())),expand=True).fillna(False)
df1.merge(df2.astype(str),left_on='keyfordf2',right_on='upc')
Out[273]:
upc_x keyfordf2 upc_y
0 23456793749 4567937 4567937
1 78907809834 9078098 9078098
2 35894796324 8947963 8947963
3 67382808404 3828084 3828084
4 93743008374 7430083 7430083
答案 1 :(得分:3)
1)创建两个数据框并转换为字符串类型。
2)pd。合并两个框架,但是使用left_on关键字访问“ upc”系列的内部7个字符
df1 = pd.DataFrame(data=[
23456793749,
78907809834,
35894796324,
67382808404,
93743008374,], columns = ['upc1'])
df1 = df1.astype(str)
df2 = pd.DataFrame(data=[
4567937,
9078098,
8947963,
3828084,
7430083,], columns = ['upc2'])
df2 = df2.astype(str)
pd.merge(df1, df2, left_on=df1['upc1'].astype(str).str[2:-2], right_on='upc2', how='inner')
Out[5]:
upc1 upc2
0 23456793749 4567937
1 78907809834 9078098
2 35894796324 8947963
3 67382808404 3828084
4 93743008374 7430083
答案 2 :(得分:1)
您可以在df1中创建一个新列,然后在该列上合并。
import pandas as pd
df1= pd.DataFrame({'upc': [ 23456793749, 78907809834, 35894796324, 67382808404, 93743008374]})
df2= pd.DataFrame({'upc': [ 4567937, 9078098, 8947963, 3828084, 7430083]})
df1['upc_old'] = df1['upc'] #in case you still need the old (longer) upc column
df1['upc'] = df1['upc'].astype(str).str[2:-2].astype(int)
merged_df = pd.merge(df1, df2, on='upc')