我已经将MLkit FaceDetection集成到了我的android应用程序中。我在下面引用了网址
https://firebase.google.com/docs/ml-kit/android/detect-faces
人脸检测处理器类别的代码为
import java.io.IOException;
import java.util.List;
/** Face Detector Demo. */
public class FaceDetectionProcessor extends VisionProcessorBase<List<FirebaseVisionFace>> {
private static final String TAG = "FaceDetectionProcessor";
private final FirebaseVisionFaceDetector detector;
public FaceDetectionProcessor() {
FirebaseVisionFaceDetectorOptions options =
new FirebaseVisionFaceDetectorOptions.Builder()
.setClassificationType(FirebaseVisionFaceDetectorOptions.ALL_CLASSIFICATIONS)
.setLandmarkType(FirebaseVisionFaceDetectorOptions.ALL_LANDMARKS)
.setTrackingEnabled(true)
.build();
detector = FirebaseVision.getInstance().getVisionFaceDetector(options);
}
@Override
public void stop() {
try {
detector.close();
} catch (IOException e) {
Log.e(TAG, "Exception thrown while trying to close Face Detector: " + e);
}
}
@Override
protected Task<List<FirebaseVisionFace>> detectInImage(FirebaseVisionImage image) {
return detector.detectInImage(image);
}
@Override
protected void onSuccess(
@NonNull List<FirebaseVisionFace> faces,
@NonNull FrameMetadata frameMetadata,
@NonNull GraphicOverlay graphicOverlay) {
graphicOverlay.clear();
for (int i = 0; i < faces.size(); ++i) {
FirebaseVisionFace face = faces.get(i);
FaceGraphic faceGraphic = new FaceGraphic(graphicOverlay);
graphicOverlay.add(faceGraphic);
faceGraphic.updateFace(face, frameMetadata.getCameraFacing());
}
}
@Override
protected void onFailure(@NonNull Exception e) {
Log.e(TAG, "Face detection failed " + e);
}
}
在“ onSuccess”侦听器中,我们将获得“ FirebaseVisionFace”类对象的数组,这些对象将具有“边界框”的脸。
@Override
protected void onSuccess(
@NonNull List<FirebaseVisionFace> faces,
@NonNull FrameMetadata frameMetadata,
@NonNull GraphicOverlay graphicOverlay) {
graphicOverlay.clear();
for (int i = 0; i < faces.size(); ++i) {
FirebaseVisionFace face = faces.get(i);
FaceGraphic faceGraphic = new FaceGraphic(graphicOverlay);
graphicOverlay.add(faceGraphic);
faceGraphic.updateFace(face, frameMetadata.getCameraFacing());
}
}
我想知道如何将此FirebaseVisionFace对象转换为Bitmap。 我想提取面部图像并将其显示在ImageView中。谁能帮帮我吗 。预先感谢。
注意:我已经从下面的URL下载了MLKit android的示例源代码
https://github.com/firebase/quickstart-android/tree/master/mlkit
答案 0 :(得分:5)
您从位图创建了FirebaseVisionImage
。返回检测结果后,每个FirebaseVisionFace
都将边界框描述为Rect
,您可以使用该边界框从原始位图中提取检测到的面部,例如使用Bitmap.createBitmap()。
答案 1 :(得分:1)
如果您尝试使用ML Kit来检测面部并使用OpenCV对检测到的面部进行图像处理,这可能对您有所帮助。请注意,在此特定示例中,您需要在onSuccess
中使用原始相机位图。
我没有找到一种方法来完成此操作,而没有位图,但实际上仍在搜索。
@Override
protected void onSuccess(@NonNull List<FirebaseVisionFace> faces, @NonNull FrameMetadata frameMetadata, @NonNull GraphicOverlay graphicOverlay) {
graphicOverlay.clear();
for (int i = 0; i < faces.size(); ++i) {
FirebaseVisionFace face = faces.get(i);
/* Original implementation has original image. Original Image represents the camera preview from the live camera */
// Create Mat representing the live camera itself
Mat rgba = new Mat(originalCameraImage.getHeight(), originalCameraImage.getWidth(), CvType.CV_8UC4);
// The box with a Imgproc affect made by OpenCV
Mat rgbaInnerWindow;
Mat mIntermediateMat = new Mat();
// Make box for Imgproc the size of the detected face
int rows = (int) face.getBoundingBox().height();
int cols = (int) face.getBoundingBox().width();
int left = cols / 8;
int top = rows / 8;
int width = cols * 3 / 4;
int height = rows * 3 / 4;
// Create a new bitmap based on live preview
// which will show the actual image processing
Bitmap newBitmap = Bitmap.createBitmap(originalCameraImage);
// Bit map to Mat
Utils.bitmapToMat(newBitmap, rgba);
// Imgproc stuff. In this examply I'm doing edge detection.
rgbaInnerWindow = rgba.submat(top, top + height, left, left + width);
Imgproc.Canny(rgbaInnerWindow, mIntermediateMat, 80, 90);
Imgproc.cvtColor(mIntermediateMat, rgbaInnerWindow, Imgproc.COLOR_GRAY2BGRA, 4);
rgbaInnerWindow.release();
// After processing image, back to bitmap
Utils.matToBitmap(rgba, newBitmap);
// Load the bitmap
CameraImageGraphic imageGraphic = new CameraImageGraphic(graphicOverlay, newBitmap);
graphicOverlay.add(imageGraphic);
FaceGraphic faceGraphic;
faceGraphic = new FaceGraphic(graphicOverlay, face, null);
graphicOverlay.add(faceGraphic);
FaceGraphic faceGraphic = new FaceGraphic(graphicOverlay);
graphicOverlay.add(faceGraphic);
// I can't speak for this
faceGraphic.updateFace(face, frameMetadata.getCameraFacing());
}
}
答案 2 :(得分:1)
由于接受的答案不够具体,我将尝试解释我的所作所为。
1.-像这样在LivePreviewActivity上创建一个ImageView:
private ImageView imageViewTest;
2.-在Activity xml上创建它,并将其链接到java文件。我将其放在示例代码之前,因此可以在照相机源顶部看到它。
3.-在创建FaceDetectionProcessor时,传递imageView的实例以能够在对象内部设置源图像。
FaceDetectionProcessor processor = new FaceDetectionProcessor(imageViewTest);
4.-更改FaceDetectionProcessor的构造函数,使其能够接收ImageView作为参数,并创建一个保存该实例的全局变量。
public FaceDetectionProcessor(ImageView imageView) {
FirebaseVisionFaceDetectorOptions options =
new FirebaseVisionFaceDetectorOptions.Builder()
.setClassificationType(FirebaseVisionFaceDetectorOptions.ALL_CLASSIFICATIONS)
.setTrackingEnabled(true)
.build();
detector = FirebaseVision.getInstance().getVisionFaceDetector(options);
this.imageView = imageView;
}
5.-我创建了一个裁剪方法,该方法采用位图和Rect来仅聚焦于面部。因此,继续执行相同的操作。
public static Bitmap cropBitmap(Bitmap bitmap, Rect rect) {
int w = rect.right - rect.left;
int h = rect.bottom - rect.top;
Bitmap ret = Bitmap.createBitmap(w, h, bitmap.getConfig());
Canvas canvas = new Canvas(ret);
canvas.drawBitmap(bitmap, -rect.left, -rect.top, null);
return ret;
}
6.-修改detectInImage方法以保存要检测的位图实例并将其保存在全局变量中。
@Override
protected Task<List<FirebaseVisionFace>> detectInImage(FirebaseVisionImage image) {
imageBitmap = image.getBitmapForDebugging();
return detector.detectInImage(image);
}
7.-最后,通过调用裁剪方法修改OnSuccess方法并将结果分配给imageView。
@Override
protected void onSuccess(
@NonNull List<FirebaseVisionFace> faces,
@NonNull FrameMetadata frameMetadata,
@NonNull GraphicOverlay graphicOverlay) {
graphicOverlay.clear();
for (int i = 0; i < faces.size(); ++i) {
FirebaseVisionFace face = faces.get(i);
FaceGraphic faceGraphic = new FaceGraphic(graphicOverlay);
graphicOverlay.add(faceGraphic);
faceGraphic.updateFace(face, frameMetadata.getCameraFacing());
croppedImage = cropBitmap(imageBitmap, face.getBoundingBox());
}
imageView.setImageBitmap(croppedImage);
}
答案 3 :(得分:0)
实际上,您可以只读取ByteBuffer
,然后可以使用OutputStream
获取要写入目标文件的数组。当然,您也可以从getBoundingBox()
获得它。