我有以下数据框:
df <- data.frame(id = paste0('id', sample(c(1:4),80000, replace = TRUE)), date = as.Date(rbeta(80000, 0.7, 10) * 100, origin = "2016-01-01"),
variant = sample(c(0:1), 80000, replace = TRUE), type = sample(paste0(LETTERS[1:3],LETTERS[1]), 80000, TRUE), code = sample(letters[1:2], 80000, TRUE),
level = sample(LETTERS[1:8], 80000, TRUE), number = sample(c(1:100), 80000, replace = TRUE) )
接下来,我将数据帧拆分几次,并将它们(加上原始df)合并到一个列表中:
dfs <- split(df,df$id)
df2 <- lapply(dfs, function(x) split(x,x$type))
df3 <- lapply(dfs, function(x) split(x,x$code))
df4 <- lapply(dfs, function(x) split(x,x$level))
df_all <- list(dfs,df2,df3,df4)
因此,我首先按ID拆分数据帧,然后在几种条件下对它们进行拆分:无,类型,代码和级别。 “无”表示我不会再拆分它。
我的第一个问题:有没有更快/更清洁的方法来实现这一目标?
第二个问题:如何将函数应用于此列表的每个元素?它可能与lapply有关,但是随着嵌套列表的数量变化,我不知道怎么做。因此,为了更清楚一点,我想知道如何将我的函数应用于:
df_all[[1]]$id1
df_all[[1]]$id2
df_all[[1]]$id3
df_all[[1]]$id4
df_all[[2]]$id1$AA
df_all[[2]]$id1$BA
df_all[[2]]$id1$CA
df_all[[2]]$id2$AA
etc.
我的功能如下:
func <- function(x){
x <- x %>%
group_by(variant) %>%
summarise(H = sum(number)) %>%
ungroup()
答案 0 :(得分:1)
如果您要做的只是对变量的不同组合进行分组并进行汇总,那么拆分组可能不是一个好主意,只需修改函数,以便您可以按如下所示输入变量的不同组合: / p>
library(dplyr)
func2 <- function(x, ...){
group_quo = quos(...)
x %>%
group_by(!!!group_quo) %>%
summarize(H = sum(number))
}
结果:
> func2(df, id, variant)
# A tibble: 8 x 3
# Groups: id [?]
id variant H
<fct> <int> <int>
1 id1 0 500192
2 id1 1 508282
3 id2 0 505829
4 id2 1 511855
5 id3 0 502280
6 id3 1 510854
7 id4 0 502621
8 id4 1 510372
> func2(df, id, type, variant)
# A tibble: 24 x 4
# Groups: id, type [?]
id type variant H
<fct> <fct> <int> <int>
1 id1 AA 0 167757
2 id1 AA 1 169025
3 id1 BA 0 166225
4 id1 BA 1 168208
5 id1 CA 0 166210
6 id1 CA 1 171049
7 id2 AA 0 169277
8 id2 AA 1 172240
9 id2 BA 0 168596
10 id2 BA 1 169396
# ... with 14 more rows
etc.
如果您尝试应用更复杂的内容,或者想要保留列表的层次结构,则可以尝试使用嵌套的data.frames:
library(dplyr)
library(tidyr)
library(purrr)
func <- function(x){
x %>%
group_by(variant) %>%
summarize(H = sum(number))
}
df_nested = df %>%
group_by(id) %>%
nest() %>%
mutate(df1 = data %>% map(func),
df2 = data %>% map(~group_by(., type) %>% nest()),
df3 = data %>% map(~group_by(., code) %>% nest()),
df4 = data %>% map(~group_by(., level) %>% nest())) %>%
mutate_at(vars(df2:df4),
funs(map(., function(x) mutate(x, data = map(data, func)) %>% unnest)))
结果:
> df_nested
# A tibble: 4 x 6
id data df1 df2 df3 df4
<fct> <list> <list> <list> <list> <list>
1 id1 <tibble [19,963 x 6]> <tibble [2 x 2]> <tibble [6 x 3]> <tibble [4 x 3]> <tibble [16 x 3]>
2 id3 <tibble [19,946 x 6]> <tibble [2 x 2]> <tibble [6 x 3]> <tibble [4 x 3]> <tibble [16 x 3]>
3 id2 <tibble [20,114 x 6]> <tibble [2 x 2]> <tibble [6 x 3]> <tibble [4 x 3]> <tibble [16 x 3]>
4 id4 <tibble [19,977 x 6]> <tibble [2 x 2]> <tibble [6 x 3]> <tibble [4 x 3]> <tibble [16 x 3]>
> df_nested %>%
+ select(id, data) %>%
+ unnest()
# A tibble: 80,000 x 7
id date variant type code level number
<fct> <date> <int> <fct> <fct> <fct> <int>
1 id1 2016-01-05 1 AA b H 71
2 id1 2016-01-01 0 CA a G 85
3 id1 2016-01-03 0 CA a E 98
4 id1 2016-01-01 1 BA b E 78
5 id1 2016-01-01 1 BA b G 64
6 id1 2016-01-18 1 AA a E 69
7 id1 2016-01-04 1 BA b E 12
8 id1 2016-01-02 0 CA b B 32
9 id1 2016-01-01 1 CA a B 44
10 id1 2016-01-02 0 BA a F 89
# ... with 79,990 more rows
> df_nested %>%
+ select(id, df1) %>%
+ unnest()
# A tibble: 8 x 3
id variant H
<fct> <int> <int>
1 id1 0 500192
2 id1 1 508282
3 id3 0 502280
4 id3 1 510854
5 id2 0 505829
6 id2 1 511855
7 id4 0 502621
8 id4 1 510372