假设我在csv文件example.csv
中包含以下数据:
Word Score
Dog 1
Bird 2
Cat 3
Dog 2
Dog 3
Dog 1
Bird 3
Cat 1
Bird 1
Cat 3
我想为每个分数计算每个单词的出现频率。预期的输出如下:
1 2 3
Dog 2 1 1
Bird 0 1 1
Cat 1 0 2
我执行此操作的代码如下:
将熊猫作为pd导入
x1 = pd.read_csv(r'path\to\example.csv')
def getUniqueWords(allWords) :
uniqueWords = []
for i in allWords:
if not i in uniqueWords:
uniqueWords.append(i)
return uniqueWords
unique_words = getUniqueWords(x1['Word'])
unique_scores = getUniqueWords(x1['Score'])
scores_matrix = [[0 for x in range(len(unique_words))] for x in range(len(unique_scores)+1)]
# The '+1' is because Python indexing starts from 0; so if a score of 0 is present in the data, the 0 index will be used for that.
for i in range(len(unique_words)):
temp = x1[x1['Word']==unique_words[i]]
for j, word in temp.iterrows():
scores_matrix[i][j] += 1 # Supposed to store the count for word i with score j
但这会产生以下错误:
IndexError Traceback (most recent call last)
<ipython-input-123-141ab9cd7847> in <module>()
19 temp = x1[x1['Word']==unique_words[i]]
20 for j, word in temp.iterrows():
---> 21 scores_matrix[i][j] += 1
IndexError: list index out of range
此外,即使我可以解决此错误,scores_matrix
也不会显示标题(Dog
,Bird
,Cat
作为行索引,而{{1 }},1
,2
作为列索引)。我希望能够通过每个分数访问每个单词的计数-这样可以达到目的:
3
那么,我该如何解决/解决这两个问题?
答案 0 :(得分:3)
将groupby
与sort = False一起使用,将value_counts
或size
与unstack
一起使用:
df1 = df.groupby('Word', sort=False)['Score'].value_counts().unstack(fill_value=0)
df1 = df.groupby(['Word','Score'], sort=False).size().unstack(fill_value=0)
print (df1)
Score 1 2 3
Word
Dog 2 1 1
Bird 1 1 1
Cat 1 0 2
如果顺序不重要,请使用crosstab
:
df1 = pd.crosstab(df['Word'], df['Score'])
print (df1)
Score 1 2 3
Word
Bird 1 1 1
Cat 1 0 2
Dog 2 1 1
最后按带有DataFrame.loc
的标签选择:
print (df.loc['Cat', 2])
0