我正在尝试计算数据帧中每个非空单元格下面的空值数量,并将其放入新的变量(大小)和数据帧中。
我已经包含了我要计算的数据帧的图片。我现在只对“到达日期”列感兴趣。新数据框的第一个观察结果应该是包含1,1、3、7..etc的列。
##Loops through all of rows in DOAs
for i in range(0, DOAs.shape[0]):
j=0
if DOAs.iloc[int(i),3] != None: ### the rest only runs if the current, i, observation isn't null
newDOAs.iloc[int(j),0] = DOAs.iloc[int(i),3] ## sets the jth i in the new dataframe to the ith (currently assessed) row of the old
foundNull = True #Sets foundNull equal to true
k=1 ## sets the counter of people
while foundNull == True and (k+i) < 677:
if DOAs.iloc[int(i+k),3] == None: ### if the next one it looks at is null, increment the counter to add another person to the family
k = k+1
else:
newDOAs.iloc[int(j),1] = k ## sets second column in new dataframe equal to the size
j = j+1
foundNull = False
j=0
答案 0 :(得分:0)
您可以做的是获取数据帧中任何列中非空条目的索引,然后获取它们之间的距离。注意:这是假设它们排列良好,和/或您不介意在数据帧上调用.reset_index()
。
以下是示例:
df = pd.DataFrame({'a': [1, None, None, None, 2, None, None, 3, None, None]})
not_null_index = df.dropna(subset=['a']).index
null_counts = {}
for i in range(len(not_null_index)):
if i < len(not_null_index) - 1:
null_counts[not_null_index[i]] = not_null_index[i + 1] - 1 - not_null_index[i]
else:
null_counts[not_null_index[i]] = len(df.a) - 1 - not_null_index[i]
null_counts_df = pd.DataFrame({'nulls': list(null_counts.values())}, index=null_counts.keys())
df_with_null_counts = pd.merge(df, null_counts_df, left_index=True, right_index=True)
基本上,这些代码所做的全部工作是获取数据帧中非空值的索引,然后获取每个索引与下一个非空索引之间的差,并将其放入列中。然后将那些null_counts
粘贴到数据框中,并将其与原始数据合并。
运行此代码段后,df_with_null_counts
等于:
a nulls
0 1.0 3
4 2.0 2
7 3.0 2
或者,您可以使用numpy而不是使用循环,这对于大型数据帧而言会更快。这是一个示例:
df = pd.DataFrame({'a': [1, None, None, None, 2, None, None, 3, None, None]})
not_null_index = df.dropna(subset=['a']).index
offset_index = np.array([*not_null_index[1:], len(df.a)])
null_counts = offset_index - np.array(not_null_index) - 1
null_counts_df = pd.DataFrame({'nulls': null_counts}, index=not_null_index)
df_with_null_counts = pd.merge(df, null_counts_df, left_index=True, right_index=True)
输出将是相同的。