在Pandas DataFrame中加快curve_fit

时间:2018-07-10 12:25:09

标签: python pandas scipy vectorization curve-fitting

我在列标题中有一个带有自变量的数据框,每行是一组独立的因变量:

    5.032530   6.972868   8.888268   10.732009  12.879130  16.877655
0   2.512298   2.132748   1.890665   1.583538   1.582968   1.440091
1   5.628667   4.206962   4.179009   3.162677   3.132448   1.887631
2   3.177090   2.274014   2.412432   2.066641   1.845065   1.574748
3   5.060260   3.793109   3.129861   2.617136   2.703114   1.921615
4   4.153010   3.354411   2.706463   2.570981   2.020634   1.646298

我想将Y = A * x ^ B类型的曲线拟合到每一行。我需要解决约5000行的A和B,每行6个数据点。我可以使用np.apply来执行此操作,但是大约需要40秒。我可以加快使用Cython或通过向量化的速度吗?我需要精确到大约4位小数

这是我所拥有的:

import pandas as pd
from scipy.optimize import curve_fit
import numpy as np
import matplotlib.pyplot as plt

df = pd.read_csv(r'C:\File.csv')

def curvefita(y):
    return curve_fit(lambda x,a,b: a*np.power(x,b),  df.iloc[:,3:].columns,  y,p0=[8.4,-.58], bounds=([0,-10],[200,10]),maxfev=2000)[0][0]
def curvefitb(y):
    return curve_fit(lambda x,a,b: a*np.power(x,b),  df.iloc[:,3:].columns,  y,p0=[8.4,-.58], bounds=([0,-10],[200,10]),maxfev=2000)[0][1]

avalues = df.iloc[:,3:].apply(curvefita, axis=1)
bvalues = df.iloc[:,3:].apply(curvefitb, axis=1)
df['a']=avalues
df['b']=bvalues

colcount = len(df.columns)
#build power fit - make the matrix
powerfit = df.copy()
for column in range(colcount-2):
    powerfit.iloc[:,column] = powerfit.iloc[:,colcount-2] * (powerfit.columns[column]**powerfit.iloc[:,colcount-1])


#graph an example
plt.plot(powerfit.iloc[0,:colcount-2],'r')
plt.plot(df.iloc[0,:colcount-2],'ro')
#another example looked up by ticker
plt.plot(powerfit.iloc[5,:colcount-2],'b')
plt.plot(df.iloc[5,:colcount-2],'bo')

2 个答案:

答案 0 :(得分:1)

实际上,您每行要进行两次Curve_fits处理,一次用于a,另一次用于b。尝试找到一种同时插入它们的方法,这样您可以将执行时间减半:

def func(x, a, b):
    return a * np.power(x, b)

def curvefit(y):
    return tuple(curve_fit(func, df.iloc[:,3:].columns, y ,p0=[8.4, -.58], bounds=([0, -10], [200, 10]))[0])

df[["a", "b"]] = df.iloc[:,3:].apply(curvefit, axis=1).apply(pd.Series)
print(df)
#     5.03253  6.972868  8.888268  10.732009  12.87913  16.877655          a  \
# 0  2.512298  2.132748  1.890665   1.583538  1.582968   1.440091   2.677070   
# 1  5.628667  4.206962  4.179009   3.162677  3.132448   1.887631  39.878792   
# 2  3.177090  2.274014  2.412432   2.066641  1.845065   1.574748   8.589886   
# 3  5.060260  3.793109  3.129861   2.617136  2.703114   1.921615  13.078827   
# 4  4.153010  3.354411  2.706463   2.570981  2.020634   1.646298  27.715207   

#           b  
# 0 -0.215338  
# 1 -1.044384  
# 2 -0.600827  
# 3 -0.656381  
# 4 -1.008753

为了使其更可重用,我将使curvefit也采用x值和函数,这些值可以与functools.partial一起传递:

from functools import partial

def curvefit(func, x, y):
    return tuple(curve_fit(func, x, y ,p0=[8.4, -.58], bounds=([0, -10], [200, 10]))[0])

fit = partial(curvefit, func, df.iloc[:,3:].columns)
df[["a", "b"]] = df.iloc[:,3:].apply(fit, axis=1).apply(pd.Series)

答案 1 :(得分:0)

按照@Brenlla的建议,我能够将运行时间缩短到550ms。这段代码使用类似于Excel的未加权/有偏公式,对于我的目的来说已经足够好了(@kennytm讨论它here

df = pd.read_csv(r'C:\File.csv')
df2=np.log(df)
df3=df2.iloc[:,3:].copy()
df3.columns=np.log(df3.columns)

def curvefit(y):
    return tuple(np.polyfit(df3.columns, y ,1))

df[["b", "a"]] = df3.apply(curvefit,axis=1).apply(pd.Series)
df['a']=np.exp(df['a'])

colcount = len(df.columns)
powerfit = df.copy()
for column in range(colcount-2):
    powerfit.iloc[:,column] = powerfit.iloc[:,colcount-1] * (powerfit.columns[column]**powerfit.iloc[:,colcount-2])

#graph an example
plt.plot(powerfit.iloc[0,:colcount-2],'r')
plt.plot(df.iloc[0,:colcount-2],'ro')
#another example looked up by ticker
plt.plot(powerfit.iloc[5,:colcount-2],'b')
plt.plot(df.iloc[5,:colcount-2],'bo')