我正在尝试使用Kafka,Spark Streaming和Python编写生产者和消费者的代码;情况如下: 有一个涉及里程表的Json格式的随机消息的产生者,该消息每3秒使用线程发布一个主题的消息:
from kafka import KafkaProducer
from kafka.errors import KafkaError import threading
from random import randint import random
import json
import math
def sendMessage():
#the function is called every 3 seconds, then a message is sent every 3 seconds
threading.Timer(3.0, sendMessage).start()
#connection with message broker
producer = KafkaProducer(bootstrap_servers=['localhost:9092'], value_serializer=lambda m: json.dumps(m).encode('ascii'))
#the id is initially fixed to 1, but there could be more robots
robotId = 1
#generation of random int
deltaSpace = randint(1, 9) #.encode()
thetaTwist = random.uniform(0, math.pi*2) #.encode()
future = producer.send('odometry', key=b'message', value={'robotId': robotId, 'deltaSpace': deltaSpace, 'thetaTwist': thetaTwist}).add_callback(on_send_success).add_errback(on_send_error)
# Block for 'synchronous' sends
try:
record_metadata = future.get(timeout=10)
except KafkaError:
# Decide what to do if produce request failed...
log.exception()
pass
producer.flush()
def on_send_success(record_metadata):
print ("topic name: " + record_metadata.topic)
print ("number of partitions: " + str(record_metadata.partition))
print ("offset: " + str(record_metadata.offset))
def on_send_error(excp):
log.error('I am an errback', exc_info=excp)
# handle exception
sendMessage()
然后有一个使用者,该使用者每3秒就同一主题使用一次消息,并使用Spark Streaming对其进行处理;这是代码:
from pyspark import SparkContext
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils
import json
# Create a local StreamingContext with two working thread and batch interval of 3 second
sc = SparkContext("local[2]", "OdometryConsumer")
ssc = StreamingContext(sc, 3)
kafkaStream = KafkaUtils.createDirectStream(ssc, ['odometry'], {'metadata.broker.list': 'localhost:9092'})
parsed = kafkaStream.map(lambda v: json.loads(v))
def f(x):
print(x)
fore = parsed.foreachRDD(f)
ssc.start() # Start the computation
ssc.awaitTermination() # Wait for the computation to terminate
要运行该应用程序,请在端口2181上启动Zookeeper服务器
sudo /opt/kafka/bin/zookeeper-server-start.sh /opt/kafka/config/zookeeper.properties
然后我在端口9092上启动Kafka的服务器/代理
sudo /opt/kafka/bin/kafka-server-start.sh /opt/kafka/config/server.properties
然后我启动生产者和消费者
python3 Producer.py
./spark-submit --jars spark-streaming-kafka-0-8-assembly_2.11-2.3.1.jar /home/erca/Scrivania/proveTesi/SparkConsumer.py
该应用程序运行时没有错误,但是我不确定消息是否真的被占用了。我该怎么做才能验证这一点?谢谢所有帮助我的人!
答案 0 :(得分:0)
在 ssc.start()之前使用 parsed.pprint(),它将在控制台上打印记录