如何提取由Tensorflow模型进行检测的图像中检测到的对象,对象类,对象ID的输出分数?
我想将所有这些详细信息存储到单个变量中,以便以后将它们存储在数据库中。
使用与此链接中相同的代码 https://github.com/tensorflow/models/blob/master/research/object_detection/object_detection_tutorial.ipynb
请帮助我解决该问题。
我尝试过
print(str(output_dict ['detection_classes'] [0]),“:”,str(output_dict ['detection_scores'] [0]))
这可以工作,并给出可能性最高的类的对象ID和得分。但是我也想提取类名以及图像中存在的所有对象的分数,Ids和名称
答案 0 :(得分:1)
您可能需要一些有关tensorflow对象检测的知识背景,这可能是您期望的简短解决方案:
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
for image_path in TEST_IMAGE_PATHS:
image = Image.open(image_path)
image_np = load_image_into_numpy_array(image)
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Actual detection.
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)
objects = []
threshold = 0.5 # in order to get higher percentages you need to lower this number; usually at 0.01 you get 100% predicted objects
for index, value in enumerate(classes[0]):
object_dict = {}
if scores[0, index] > threshold:
object_dict[(category_index.get(value)).get('name').encode('utf8')] = \
scores[0, index]
objects.append(object_dict)
print (objects)
print(len(np.where(scores[0] > threshold)[0])/num_detections[0])
plt.figure(figsize=IMAGE_SIZE)
plt.imshow(image_np)
希望这会有所帮助。
答案 1 :(得分:0)
它为您提供了得分最高的课程,因为输出张量从最高得分到最低得分排序,并且您通过索引第一个元素[0]来要求最高得分。
查看object_detection / inference / detection_inference以获得灵感。
对于类名,您可以使用label map创建类别索引字典以将类ID转换为名称。
答案 2 :(得分:0)
获取班级名称 您的标签图应该可以在这里提供帮助。
from object_detection.utils import label_map_util
label_map_path = os.path.join(annotations_dir, 'label_map.pbtxt')
label_map_dict = label_map_util.get_label_map_dict(label_map_path)
label_map_dict_number_to_name = {v: k for k, v in label_map_dict.iteritems()}
class_number = output_dict['detection_classes'][index]
class_name = label_map_dict_number_to_name[class_number]
请粘贴您的代码,以便我们找出为什么在y中只有一个框