Age_Group Region Population
<fct> <fct> <int>
1 0-4 ENGLAND 3384925
2 5-9 ENGLAND 3497402
3 10-14 ENGLAND 3166038
4 15-19 ENGLAND 3120730
5 20-24 ENGLAND 3526141
6 25-29 ENGLAND 3831624
7 30-34 ENGLAND 3757400
8 35-39 ENGLAND 3642643
9 40-44 ENGLAND 3442758
10 45-49 ENGLAND 3850108
嘿,您有最有效的方法来按不同的时间间隔合并年龄组,例如5岁或10岁,以形成以下列表。
Age_Group Region Population
<fct> <fct> <int>
1 0-9 ENGLAND xxx
2 10-19 ENGLAND xxx
3 20-29 ENGLAND xxx
...
答案 0 :(得分:2)
这里有<body onload="loadXMLDoc()">
<input list="myInput" id="myInputId" value="">
<button id="myButton" onClick="loadXMLDoc()">submit</button>
<p>input value: <span id="inputValue"></span></p>
<p>XML tree node position of input value: <span id="nodePosition"></span></p>
<p>State: <span id="state"></span></p>
<p>GDP: <span id="gdp"></span></p>
<p>Population: <span id="population"></span></p>
<datalist id="myInput">
<option id="AL">Alabama</option>
<option id="CA">California</option>
<option id="MI">Michigan</option>
<option id="TX">Texas</option>
<option id="WI">Wisconsin</option>
</datalist>
的可能性
<?xml version="1.0" encoding="UTF-8"?>
<STATE_DATA>
<UNIT>
<STATE>Wisconsin</STATE>
<GDP>232,300,000,000</GDP>
<POPULATION>5,800,000</POPULATION>
</UNIT>
<UNIT>
<STATE>Alabama</STATE>
<GDP>165,800,000,000</GDP>
<POPULATION>4,900,000</POPULATION>
</UNIT>
<UNIT>
<STATE>California</STATE>
<!-- Note: the GDP node for this unit is missing -->
<POPULATION>39,600,000</POPULATION>
</UNIT>
<UNIT>
<STATE>Texas</STATE>
<GDP>1,600,000,000,000</GDP>
<POPULATION>28,300,000</POPULATION>
</UNIT>
<UNIT>
<STATE>Michigan</STATE>
<GDP>382,000,000</GDP>
<POPULATION>10,000,000</POPULATION>
</UNIT>
</STATE_DATA>
说明:如@DavidArenburg所述,我们按每两行对条目进行分组,通过组合每两行的tidyverse
个条目来创建新的library(tidyverse)
df %>%
mutate(grp = rep(1:(nrow(.)/2), each = 2)) %>%
group_by(grp) %>%
mutate(
Age_Group = paste(Age_Group, collapse = ":"),
Age_Group = gsub("-\\d+:\\d+", "", Age_Group)) %>%
mutate(Population = sum(Population)) %>%
slice(1) %>%
ungroup() %>%
select(-grp)
## A tibble: 5 x 3
# Age_Group Region Population
# <chr> <fct> <int>
#1 0-9 ENGLAND 6882327
#2 10-19 ENGLAND 6286768
#3 20-29 ENGLAND 7357765
#4 30-39 ENGLAND 7400043
#5 40-49 ENGLAND 7292866
标签,然后汇总Age_Group
个条目。大多数工作来自创建新的Age_Group
标签。