我已经建立了一种创建纠错模型(ECM)的方法,纠错模型是多个ECM的平均值。为此,我利用R中的lm()
函数来创建多个表示ECM的lm
对象。我平均每个对象的系数以获得最终模型。 lm
对象表示ECM的方式是,在对数据运行lm()
之前,我将数据转换为ECM所需的格式。
我还使用AIC向后选择来消除不需要的变量。在创建ECM时,该过程似乎运行良好。但是,当我创建一个具有与模型中的系数相匹配的列名的数据框时,我收到一条错误消息,指出数据中缺少必要的变量。但是,在最终模型中未包含此变量,因此不必进行预测。那么,predict()
为什么要寻找该变量?我在做什么错了?
#Load data
library(ecm)
data(Wilshire)
trn <- Wilshire[Wilshire$date<='2015-12-01',]
y <- trn$Wilshire5000
xeq <- xtr <- trn[c('CorpProfits', 'FedFundsRate', 'UnempRate')]
#Function to split data into k partitions and build k models, each on a (k-1)/k subset of the data
avelm <- function(formula, data, k = 5, seed = 5, ...) {
lmall <- lm(formula, data, ...)
modellist <- 1:k
set.seed(seed)
models <- lapply(modellist, function(i) {
tstIdx <- sample(nrow(data), 1/k * nrow(data))
trn <- data[-tstIdx, ]
lm(as.formula(formula), data = trn)
})
lmnames <- names(lmall$coefficients)
lmall$coefficients <- rowMeans(as.data.frame(sapply(models, function(m) coef(m))))
names(lmall$coefficients) <- lmnames
lmall$fitted.values <- predict(lmall, data)
target <- trimws(gsub("~.*$", "", formula))
lmall$residuals <- data[, target] - lmall$fitted.values
return(lmall)
}
#Function to create an ECM using backwards selection based on AIC (leveraged avelm function above)
aveecmback <- function (y, xeq, xtr, k = 5, seed = 5, ...) {
xeqnames <- names(xeq)
xeqnames <- paste0(xeqnames, "Lag1")
xeq <- as.data.frame(xeq)
xeq <- rbind(rep(NA, ncol(xeq)), xeq[1:(nrow(xeq) - 1), ])
xtrnames <- names(xtr)
xtrnames <- paste0("delta", xtrnames)
xtr <- as.data.frame(xtr)
xtr <- data.frame(apply(xtr, 2, diff, 1))
yLag1 <- y[1:(length(y) - 1)]
x <- cbind(xtr, xeq[complete.cases(xeq), ])
x <- cbind(x, yLag1)
names(x) <- c(xtrnames, xeqnames, "yLag1")
x$dy <- diff(y, 1)
formula <- "dy ~ ."
model <- avelm(formula, data = x, k = k, seed = seed, ...)
fullAIC <- partialAIC <- AIC(model)
while (partialAIC <= fullAIC) {
todrop <- rownames(drop1(model))[-grep("none|yLag1", rownames(drop1(model)))][which.min(drop1(model)$AIC[-grep("none|yLag1", rownames(drop1(model)))])]
formula <- paste0(formula, " - ", todrop)
model <- avelm(formula, data = x, seed = seed, ...)
partialAIC <- AIC(model)
if (partialAIC < fullAIC & length(rownames(drop1(model))) > 2) {
fullAIC <- partialAIC
}
}
return(model)
}
finalmodel <- aveecmback(y, xeq, xtr)
print(finalmodel)
Call:
lm(formula = formula, data = data)
Coefficients:
(Intercept) deltaCorpProfits deltaUnempRate CorpProfitsLag1 yLag1
-0.177771 0.012733 -1.204489 0.002046 -0.024294
#Create data frame to predict on
set.seed(2)
df <- data.frame(deltaCorpProfits=rnorm(5), deltaUnempRate=rnorm(5), CorpProfitsLag1=rnorm(5), yLag1=rnorm(5))
predict(finalmodel, df)
Error in eval(predvars, data, env) : object 'deltaFedFundsRate' not found
答案 0 :(得分:1)
我知道了。问题出在aveecmback()
函数的一部分中,我在while循环内修改了formula
。相反,如果我修改x
来删除变量,问题就解决了。这是因为即使在公式中将其删除,这样的数据在数据框中仍然需要disp
:
data(mtcars)
model <- lm(mpg~.-disp, mtcars)
predict(model, mtcars[-which(names(mtcars) %in% 'disp')])
Error in eval(predvars, data, env) : object 'disp' not found
但是,类似这样的操作将允许predict()
在没有disp
的数据帧上工作:
data(mtcars)
model <- lm(mpg~., mtcars[-which(names(mtcars) %in% 'disp')])
predict(model, mtcars[-which(names(mtcars) %in% 'disp')])
Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Drive Hornet Sportabout
22.37587 22.07853 26.58631 20.82285 17.26052
Valiant Duster 360 Merc 240D Merc 230 Merc 280
20.46572 14.04956 22.38273 24.20323 18.97756
Merc 280C Merc 450SE Merc 450SL Merc 450SLC Cadillac Fleetwood
19.37670 15.10244 16.12864 16.26339 11.31787
Lincoln Continental Chrysler Imperial Fiat 128 Honda Civic Toyota Corolla
10.68985 10.65062 28.03687 29.29545 29.42472
Toyota Corona Dodge Challenger AMC Javelin Camaro Z28 Pontiac Firebird
23.72382 16.91215 17.78366 13.53713 16.15156
Fiat X1-9 Porsche 914-2 Lotus Europa Ford Pantera L Ferrari Dino
28.35383 26.31886 27.36155 18.86561 19.75073
Maserati Bora Volvo 142E
13.86302 24.78865