在idris的最终无标签中编码问题的系统f omega

时间:2018-07-05 01:22:57

标签: types idris system-f tagless-final

因此,我正在尝试以最终的无标签样式创建系统omega。 我已经成功地对系统f进行了编码,如以下代码所示(还提供了一些示例)(此外,请忽略以下事实:推理不起作用,并且示例非常难看,我将在另一个问题中对它们进行询问):

module F

%access public export

interface F (ty : Type) (val : ty -> Type) where
  double : ty
  mkDouble : Double -> val double
  plus : val double -> val double -> val double
  bool : ty
  mkBool : Bool -> val bool
  useBool : val bool -> val x -> val x -> val x
  forall : (ty -> ty) -> ty
  mkForall : (tf : ty -> ty) -> ((x:ty) -> val (tf x)) -> val (forall tf)
  useForall : val (forall tf) -> (x:ty) -> val (tf x)
  arr : ty -> ty -> ty
  mkArr : (val x -> val y) -> val (arr x y)
  useArr : val (arr x y) -> val x -> val y

[FID] F Type (\x => x) where
  double = Double
  mkDouble x = x
  plus x y = x + y
  bool = Bool
  mkBool x = x
  useBool x y z = if x then y else z
  forall f = (x:Type) -> f x
  mkForall tf f = f
  useForall f x = f x
  arr x y = x -> y
  mkArr f = f
  useArr f x = f x

fIdTy : {f : F ty val} -> ty
fIdTy {f=f} = forall @{f} $ \x => arr @{f} x x

fId : {f : F ty val} -> val (fIdTy {f=f})
fId {f=f} = mkForall @{f} (\x => arr @{f} x x) (\t => mkArr @{f} id)

fIdId : {f : F ty val} -> val (fIdTy {f=f})
fIdId {f=f} = useArr @{f} (useForall @{f} fId fIdTy) fId

useIdId : (x : Type) -> x -> x
useIdId = fIdId {f=FID}

compose : {f:F ty val} -> val (arr @{f} y z) -> val (arr @{f} x y) -> val (arr @{f} x z)
compose {f=f} yz xy = mkArr @{f} $ \x => useArr @{f} yz (useArr @{f} xy x)

composeFull : {f:F ty val} -> val (arr @{f} (arr @{f} y z) (arr @{f} (arr @{f} x y) (arr @{f} x z)))
composeFull {f=f} = mkArr @{f} $ \yz => mkArr @{f} $ \xy => compose yz xy

-- Since currying/uncurrying is only manual typing, as we shown how to convert from arr to ->, we will choose the most convient form freely.

但是我在做欧米茄时遇到了麻烦。

import F

%default total

-- look like the core calculus isnt very extensible.
-- neverthless, ftg allow us to reuse definition, so we will stick with it.
interface F (ty soty) val => FO (so:Type) (ty:so -> Type) (soty:so) (val:ty soty -> Type) where
  tyArr : so -> so -> so
  mkTyArr : (ty x -> ty y) -> ty (tyArr x y)
  useTyArr : ty (tyArr x y) -> ty x -> ty y
  forall : (s:so) -> (ty s -> ty soty) -> ty soty
  mkForall : (s:so) -> (tf:ty s -> ty soty) -> ((x:ty s) -> val (tf x)) -> val (forall s tf)
  useForall : val (forall s tf) -> (x:ty s) -> val (tf x)
  getF : F (ty soty) val

[FOID] FO Type (\x => x) Type (\x => x) using FID where
  tyArr x y = x -> y
  mkTyArr f = f
  useTyArr f x = f x
  forall s f = (x:s) -> f x
  mkForall s tf f = f
  useForall f x = f x
  getF = FID

-- note that we still cant has a single leb - it require type in type
leb : {fo : FO so ty soty val} -> ty s -> ty s -> ty soty
leb {fo=fo} {s=s} {soty=soty} x y = forall @{fo} (tyArr @{fo} s soty) (\f => arr @{getF @{fo}} (useTyArr @{fo} f x) (useTyArr @{fo} f y))

refl : {fo:FO so ty soty val} -> (x:ty s) -> val (leb {fo=fo} x x)
refl {s=s} {soty=soty} {fo=fo} x =
  mkForall @{fo}
    (tyArr @{fo} s soty)
    (\f => arr @{getF @{fo}} (useTyArr @{fo} f x) (useTyArr @{fo} f x))
    (\x => mkArr @{getF @{fo}} (\z => z))

trans : {fo:FO so ty soty val} -> (x:ty s) -> (y:ty s) -> (z:ty s) -> val (arr @{getF @{fo}} (leb {fo=fo} x y) (arr @{getF @{fo}} (leb {fo=fo} y z) (leb {fo=fo} x z)))
trans {s=s} {soty=soty} {fo=fo} tx ty tz =
  mkArr @{getF @{fo}} {x=leb {fo=fo} tx ty} $ \xy => mkArr @{getF @{fo}} {x=leb {fo=fo} ty tz} {y=leb {fo=fo} tx tz} $ \yz =>
    mkForall @{fo} _ _ $ \tf =>
      compose {f=getF @{fo}}
        (useForall @{fo} yz tf)
        (useForall @{fo} xy tf)

symm : {fo:FO so ty soty val} -> (tx:ty s) -> (ty:ty s) -> val (leb {fo=fo} tx ty) -> val (leb {fo=fo} ty tx)
symm {s=s} {soty=soty} {fo=fo} tx ty xy = ?z $
  useForall @{fo} {s=tyArr @{fo} s soty} {tf=\f => arr @{getF @{fo}} (useTyArr @{fo} f tx) (useTyArr @{fo} f ty)} xy
-- what is ?z ? the thing is, I cant write it out, because the current setup wont reduce mkTyArr and useTyArr.

所以我的问题是,如何解决?好像我可以在lambda类型上显式添加beta相等性(如Idris Eq),并让用户使用它来重写beta缩减。

但是,我希望它可以自动完成。我有什么选择?

0 个答案:

没有答案