Python:便捷功能,可显示Pandas DataFrame的直方图

时间:2018-07-04 21:26:28

标签: python seaborn

我有一个便利函数,可以按类别变量(1)的级别生成计数的漂亮摘要(2)。

这是产生计数的步骤(1):

import plotly.plotly as py
stringCol = list(df.select_dtypes(include=['object']))                                        # list object of categorical variables    

dfs_ct = [df[c]                                                                               # dataframe of counts
          .value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=False) # generate matrix data
          .rename_axis(mapper=c, axis=0, copy=True, inplace=False)                            # rename columns
          .to_frame(name='count')                                                             # create column name, "count"
          .applymap("{:,}".format)                                                            # add thousands separator
          for c in stringCol]

步骤(2)创建一个漂亮的摘要,并排显示每个分类变量级别的计数:

# create a helper function that takes pd.dataframes as input and outputs pretty, compact EDA results
from IPython.display import display_html
def display_side_by_side(*args):
    html_str = ''
    for df in args:
        html_str = html_str + df.to_html()
    display_html(html_str.replace('table','table style="display:inline"'),raw=True)

示例输出:

enter image description here

我将如何修改步骤(2)以在计数以下生成Seaborn直方图?

0 个答案:

没有答案