我正在尝试为自己实现一袋单词分类器,以对我拥有的数据集进行分类。为了确定我的实现是正确的,我只使用了Caltech数据集(http://www.vision.caltech.edu/Image_Datasets/Caltech101/)中的两个类来测试我的实现:大象和电吉他。由于它们在视觉上完全不同,我相信正确实施“视觉词袋”(BOVW)分类可以对这些图像进行准确的分类。
根据我的理解(如果我做错了,请纠正我),正确的BOVW分类分为三个步骤:
从训练图像中检测SIFT 128维描述符,并将其与k均值聚类。
在k均值分类器中对训练和测试图像SIFT描述符(在步骤1中进行了训练)进行测试,并制作分类结果的直方图。
将这些直方图用作SVM分类的特征向量
正如我之前解释的那样,我试图解决一个非常简单的问题,即对两个非常不同的类进行分类。我正在从文本文件中读取训练和测试文件,我使用训练图像SIFT描述符来训练k均值分类器,使用训练和测试图像获得分类的直方图,最后将它们用作分类的特征向量。
我的解决方案的源代码如下:
import numpy as np
from sklearn import svm
from sklearn.metrics import accuracy_score
#this function will get SIFT descriptors from training images and
#train a k-means classifier
def read_and_clusterize(file_images, num_cluster):
sift_keypoints = []
with open(file_images) as f:
images_names = f.readlines()
images_names = [a.strip() for a in images_names]
for line in images_names:
print(line)
#read image
image = cv2.imread(line,1)
# Convert them to grayscale
image =cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
# SIFT extraction
sift = cv2.xfeatures2d.SIFT_create()
kp, descriptors = sift.detectAndCompute(image,None)
#append the descriptors to a list of descriptors
sift_keypoints.append(descriptors)
sift_keypoints=np.asarray(sift_keypoints)
sift_keypoints=np.concatenate(sift_keypoints, axis=0)
#with the descriptors detected, lets clusterize them
print("Training kmeans")
kmeans = MiniBatchKMeans(n_clusters=num_cluster, random_state=0).fit(sift_keypoints)
#return the learned model
return kmeans
#with the k-means model found, this code generates the feature vectors
#by building an histogram of classified keypoints in the kmeans classifier
def calculate_centroids_histogram(file_images, model):
feature_vectors=[]
class_vectors=[]
with open(file_images) as f:
images_names = f.readlines()
images_names = [a.strip() for a in images_names]
for line in images_names:
print(line)
#read image
image = cv2.imread(line,1)
#Convert them to grayscale
image =cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
#SIFT extraction
sift = cv2.xfeatures2d.SIFT_create()
kp, descriptors = sift.detectAndCompute(image,None)
#classification of all descriptors in the model
predict_kmeans=model.predict(descriptors)
#calculates the histogram
hist, bin_edges=np.histogram(predict_kmeans)
#histogram is the feature vector
feature_vectors.append(hist)
#define the class of the image (elephant or electric guitar)
class_sample=define_class(line)
class_vectors.append(class_sample)
feature_vectors=np.asarray(feature_vectors)
class_vectors=np.asarray(class_vectors)
#return vectors and classes we want to classify
return class_vectors, feature_vectors
def define_class(img_patchname):
#print(img_patchname)
print(img_patchname.split('/')[4])
if img_patchname.split('/')[4]=="electric_guitar":
class_image=0
if img_patchname.split('/')[4]=="elephant":
class_image=1
return class_image
def main(train_images_list, test_images_list, num_clusters):
#step 1: read and detect SURF keypoints over the input image (train images) and clusterize them via k-means
print("Step 1: Calculating Kmeans classifier")
model= bovw.read_and_clusterize(train_images_list, num_clusters)
print("Step 2: Extracting histograms of training and testing images")
print("Training")
[train_class,train_featvec]=bovw.calculate_centroids_histogram(train_images_list,model)
print("Testing")
[test_class,test_featvec]=bovw.calculate_centroids_histogram(test_images_list,model)
#vamos usar os vetores de treino para treinar o classificador
print("Step 3: Training the SVM classifier")
clf = svm.SVC()
clf.fit(train_featvec, train_class)
print("Step 4: Testing the SVM classifier")
predict=clf.predict(test_featvec)
score=accuracy_score(np.asarray(test_class), predict)
file_object = open("results.txt", "a")
file_object.write("%f\n" % score)
file_object.close()
print("Accuracy:" +str(score))
if __name__ == "__main__":
main("train.txt", "test.txt", 1000)
main("train.txt", "test.txt", 2000)
main("train.txt", "test.txt", 3000)
main("train.txt", "test.txt", 4000)
main("train.txt", "test.txt", 5000)
如您所见,我试图改变kmeans分类器中的簇数。但是,无论我尝试什么,由于图像类的差别很大,准确度始终为53.62%。
那么,我对BOVW的理解或实施是否存在任何问题?我在这里弄错了什么?
答案 0 :(得分:2)
解决方案比我想象的简单。
在这一行:
hist, bin_edges=np.histogram(predict_kmeans)
垃圾箱数是numpy中标准垃圾箱数(我相信它是10)。通过这样做:
hist, bin_edges=np.histogram(predict_kmeans, bins=num_clusters)
使用1000个簇和1000个维向量,准确度从我报告的53.62%提高到78.26%。
答案 1 :(得分:1)
您似乎正在为每个图像创建聚类和直方图。但是,为了使它起作用,您必须聚合所有图像的筛选功能,然后将这些特征聚类,并使用这些常见的聚类来创建直方图。还请检查https://github.com/shackenberg/Minimal-Bag-of-Visual-Words-Image-Classifier