Python Bag of Words

时间:2018-04-21 16:41:26

标签: python python-3.x nltk word2vec bag

[PYTHON 3.x] 大家好, 我正在开发一个自然语言处理项目,需要一些帮助。 我已经从所有文档中创建了不同单词的词汇表(列表)。我想根据这个词汇表列表创建每个文档的向量。 (Doc_POS_words包含100个文档,格式为Doc_POS_words [0] =第一个doc,Doc_POS_words [1] =第二个doc等。)

输出:

# Doc_POS_words = [contains all the words of each document as below]

Doc_POS_words = [
  ['war','life','travel','live','night'], 
  ['books','stuent','travel','study','yellow'],
  ]

# myVoc = [distinct words from all the documents as below]

myVoc = [
  'war',
  'life', 
  'travel',
  'live',
  'night',
  'books',
  'student',
  'study',
  'yellow'
]

# myVoc_vector = [ need this as well ]

# Doc_POS_words_BoW = [need this for each document]

PS:我没有使用NLTK,因为我没有使用NLTK支持的任何语言

感谢。

2 个答案:

答案 0 :(得分:0)

检查TfidfVectorizer

from sklearn.feature_extraction.text import TfidfVectorizer
corpus = ["Doc 1 words",
          "Doc 2 words"]
vectorizer = TfidfVectorizer(min_df=1)
vectors = vectorizer.fit_transform(corpus)

答案 1 :(得分:0)

我仍然不确定你在问什么,所以我会给你一些帮助。我认为你需要的是使用python集。

https://docs.python.org/3/tutorial/datastructures.html#sets

以下是一些示例,使用您问题中的数据:

# create a set of the whole word list
myVocSet = set(myVoc)

for doc_words in Doc_POS_words:
  # convert from list to set
  doc_words = set(doc_words)  

  # want to find words in the doc also in the vocabulary list?
  print(myVocSet.intersection(doc_words))

  # want to find words in your doc not in the vocabulary list?
  print(doc_words.difference(myVocSet))

  # want to find words in the vocab list not used in your doc?
  print(MyVocSet.difference(myVocSet))

以下是一些帮助:

>>> x = set(('a', 'b', 'c', 'd'))
>>> y = set(('c', 'd', 'e', 'f'))
>>>
>>> x.difference(y)
{'a', 'b'}
>>> y.difference(x)
{'f', 'e'}
>>> x.intersection(y)
{'c', 'd'}
>>> y.intersection(x)
{'c', 'd'}
>>> x.union(y)
{'a', 'b', 'd', 'f', 'e', 'c'}
>>> x.symmetric_difference(y)
{'a', 'b', 'f', 'e'}