我正在使用一种单因素方差分析,希望进行事后测试。我不断收到错误消息:
UseMethod(“ TukeyHSD”)中的错误: 没有将“ TukeyHSD”的适用方法应用于“功能”类的对象
我仍然找不到解决方法。
我的数据如下:
Treatment IND
T 1 7
T 1 7
T 1 10
T 1 5
T 1 10
T 1 10
T 1 12
T 1 8
T 1 1
T 1 8
T 1 14
T 1 9
T 1 10
T 1 10
T 1 6
T 1 9
T 1 9
T 1 11
T 1 2
T 1 6
T 1 5
T 1 9
T 1 11
T 1 9
T 1 7
T 1 12
T 1 11
T 1 8
T 1 10
T 1 9
T 1 11
T 1 9
T 1 4
T 1 9
T 1 11
T 1 11
T 1 9
T 1 12
T 1 13
T 1 11
T 1 9
T 1 10
T 1 7
T 1 7
T 1 8
T 1 11
T 1 1
T 2 7
T 2 8
T 2 5
T 2 8
T 2 4
T 2 5
T 2 3
T 2 3
T 2 4
T 2 4
T 2 5
T 2 4
T 2 5
T 2 6
T 2 4
T 2 8
T 2 7
T 2 5
T 2 6
T 2 6
T 2 3
T 2 7
T 2 4
T 2 4
T 2 4
T 2 6
T 2 5
T 2 6
T 2 6
T 2 3
T 2 5
T 2 5
T 2 7
T 2 7
T 2 5
T 2 3
T 2 6
T 2 6
T 2 7
T 2 7
T 2 5
T 2 3
T 2 7
T 2 6
T 2 8
T 2 5
T 2 7
T 2 5
T 2 6
T 3 7
T 3 11
T 3 8
T 3 10
T 3 7
T 3 10
T 3 10
T 3 6
T 3 9
T 3 8
T 3 7
T 3 14
T 3 9
T 3 8
T 3 15
T 3 13
T 3 5
T 3 9
T 3 9
T 3 10
T 3 10
T 3 12
T 3 13
T 3 10
T 3 9
T 3 10
T 3 7
T 3 9
T 3 9
T 3 11
T 3 7
T 3 11
T 3 7
T 3 11
T 3 9
T 3 10
T 3 7
T 3 5
T 3 9
T 3 10
T 3 11
T 3 12
T 3 11
T 3 9
T 3 9
T 3 4
T 3 7
T 3 6
T 3 4
则ANOVA结果为:
oneway.test(IND〜Umsiedlung)
One-way analysis of means (not assuming equal variances)
data: IND and Treatment
F = 52.778, num df = 2.000, denom df = 86.334, p-value = 1.063e-15
tukey.test <-TukeyHSD(x = oneway.test(IND〜Umsiedlung),conf.level = 0.95)
tukey.test
Error in UseMethod("TukeyHSD") :
no applicable method for 'TukeyHSD' applied to an object of class "htest"
我的命令或数据集有问题吗?我知道这是一个非常主要的问题...但是,如果有人可以帮助我,将不胜感激!谢谢。
答案 0 :(得分:0)
TukeyHSD可处理由功能aov
产生的aov类对象。函数oneway.test
返回类htest的对象。那就是你出错的原因。如果要运行TukeyHSD
,则需要使用aov
使用数据:
TukeyHSD(aov(lm(IND ~ Treatment, data = df1)))
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = IND ~ Treatment, data = df1)
$`Treatment`
diff lwr upr p adj
T2-T1 -3.2726878 -4.3935451 -2.151831 0.000000
T3-T1 0.3803734 -0.7404838 1.501231 0.701296
T3-T2 3.6530612 2.5439410 4.762181 0.000000
数据:
df1 <- structure(list(Treatment = c("T1", "T1", "T1", "T1", "T1", "T1",
"T1", "T1", "T1", "T1", "T1", "T1", "T1", "T1", "T1", "T1", "T1",
"T1", "T1", "T1", "T1", "T1", "T1", "T1", "T1", "T1", "T1", "T1",
"T1", "T1", "T1", "T1", "T1", "T1", "T1", "T1", "T1", "T1", "T1",
"T1", "T1", "T1", "T1", "T1", "T1", "T1", "T1", "T2", "T2", "T2",
"T2", "T2", "T2", "T2", "T2", "T2", "T2", "T2", "T2", "T2", "T2",
"T2", "T2", "T2", "T2", "T2", "T2", "T2", "T2", "T2", "T2", "T2",
"T2", "T2", "T2", "T2", "T2", "T2", "T2", "T2", "T2", "T2", "T2",
"T2", "T2", "T2", "T2", "T2", "T2", "T2", "T2", "T2", "T2", "T2",
"T2", "T2", "T3", "T3", "T3", "T3", "T3", "T3", "T3", "T3", "T3",
"T3", "T3", "T3", "T3", "T3", "T3", "T3", "T3", "T3", "T3", "T3",
"T3", "T3", "T3", "T3", "T3", "T3", "T3", "T3", "T3", "T3", "T3",
"T3", "T3", "T3", "T3", "T3", "T3", "T3", "T3", "T3", "T3", "T3",
"T3", "T3", "T3", "T3", "T3", "T3", "T3"),
IND = c(7L, 7L, 10L,
5L, 10L, 10L, 12L, 8L, 1L, 8L, 14L, 9L, 10L, 10L, 6L, 9L, 9L,
11L, 2L, 6L, 5L, 9L, 11L, 9L, 7L, 12L, 11L, 8L, 10L, 9L, 11L,
9L, 4L, 9L, 11L, 11L, 9L, 12L, 13L, 11L, 9L, 10L, 7L, 7L, 8L,
11L, 1L, 7L, 8L, 5L, 8L, 4L, 5L, 3L, 3L, 4L, 4L, 5L, 4L, 5L,
6L, 4L, 8L, 7L, 5L, 6L, 6L, 3L, 7L, 4L, 4L, 4L, 6L, 5L, 6L, 6L,
3L, 5L, 5L, 7L, 7L, 5L, 3L, 6L, 6L, 7L, 7L, 5L, 3L, 7L, 6L, 8L,
5L, 7L, 5L, 6L, 7L, 11L, 8L, 10L, 7L, 10L, 10L, 6L, 9L, 8L, 7L,
14L, 9L, 8L, 15L, 13L, 5L, 9L, 9L, 10L, 10L, 12L, 13L, 10L, 9L,
10L, 7L, 9L, 9L, 11L, 7L, 11L, 7L, 11L, 9L, 10L, 7L, 5L, 9L,
10L, 11L, 12L, 11L, 9L, 9L, 4L, 7L, 6L, 4L)),
class = "data.frame",
row.names = c(NA, -145L))