看看这种奇怪的加载/保存模型情况。我保存了变分自动编码器模型及其编码器和解码器:
autoencoder.save("autoencoder_save", overwrite=True)
encoder.save("encoder_save", overwrite=True)
decoder.save("decoder_save", overwrite=T)
之后,我从磁盘上加载了所有文件:
autoencoder_disk = load_model("autoencoder_save", custom_objects={'KLDivergenceLayer': KLDivergenceLayer,
'nll': nll})
encoder_disk = load_model("encoder_save", custom_objects={'KLDivergenceLayer': KLDivergenceLayer,
'nll': nll})
decoder_disk = load_model("decoder_save", custom_objects={'KLDivergenceLayer': KLDivergenceLayer,
'nll': nll})
如果我尝试
x_test_encoded = encoder_disk.predict(x_test,batch_size=batch_size)
x_test_decoded = decoder_disk.predict(x_test_encoded)
print(np.round(x_test_decoded[3]))
一切正常,就好像我使用内存中的编码器/解码器一样,但是如果我尝试
vae = autoencoder_disk.predict(x_test_encoded)
我知道了
ValueError: Error when checking model : the list of Numpy arrays that you are passing to your model is not the size the model expected. Expected to see 2 array(s) but instead got the following list of 1 arrays:...
尽管我可以从内存中的变化型自动编码器进行预测。为什么从磁盘加载autoencoder时不起作用?
答案 0 :(得分:0)
您要将编码的输出x_test_encoded
作为输入传递给自动编码器autoencoder_disk.predict(x_test_encoded)
。您应该传递编码器期望x_test
的原始输入。