library(data.table)
do.call(CJ, c(tstrsplit(text, split = " "), unique = TRUE))
# V1 V2 V3 V4 V5
# 1: I hate him <NA> <NA>
# 2: I hate him <NA> much
# 3: I hate him so <NA>
# 4: I hate him so much
# 5: I hate it <NA> <NA>
# ---
# 104: she love it so much
# 105: she love you <NA> <NA>
# 106: she love you <NA> much
# 107: she love you so <NA>
# 108: she love you so much
我指定了import cvxpy as cp
import numpy as np
x_1 = cp.Variable()
x_2 = cp.Variable()
objective = cp.Minimize(x_1)
constraints = [2*x_1 + x_2 >= 1, x_1+3*x_2>=1, x_1>=0, x_2>=0]
prob = cp.Problem(objective, constraints)
# The optimal objective value is returned by `prob.solve()`.
result = prob.solve()
# The optimal value for x is stored in `x.value`.
print(result)
print("x_1", x_1.value)
print("x_2", x_2.value)
,但是求解器给了我这个结果:
x_1 >= 0
结果x_1小于0
答案 0 :(得分:0)
大多数优化器将允许您的约束违反某些容忍度。这实际上归结为您愿意接受多少约束违反。就您而言,听起来您希望违规程度非常低。因此,您可以更改
result = prob.solve()
给出
-2.2491441767693296e-10
('x_1', array(-2.24914418e-10))
('x_2', array(1.5537159)
到
result = prob.solve(feastol=1e-24)
给出
1.139898310650857e-14
('x_1', array(1.13989831e-14))
('x_2', array(1.5537766))
与具有默认设置feastol=1e-7
的结果相比,较低的feastol
设置产生令人满意的约束违例。