我有几个具有公司与顾问关系的数据框,每个感兴趣的年份都有一个。
例如,2015年数据框如下所示。让我们将其称为Advisors2015(然后我也有Advisors2014,advisors2013,advisants2012等):
> advisors2015
[,1] [,2] [,3] [,4]
colnam "Mark" "Company.name" "Company.ID" "Advisor.Name"
row1 "1" "VOLKSWAGEN AG" "DE2070000543" "PRICEWATERHOUSECOOPERS"
row2 " " "VOLKSWAGEN AG" "DE2070000543" "PWC DEUTSCHE REVISION"
row3 " " "VOLKSWAGEN AG" "DE2070000543" "C&L TREUARBEIT REVISION"
row4 "2" "ROYAL DUTCH SHELL PLC" "GB04366849" "LLOYDS TSB REGISTRARS"
row4 "2" "ROYAL DUTCH SHELL PLC" "GB04366849" "LLOYDS TSB REGISTRARS"
row5 " " "ROYAL DUTCH SHELL PLC" "GB04366849" "PRICEWATERHOUSECOOPERS"
row6 " " "ROYAL DUTCH SHELL PLC" "GB04366849" "KPMG ACCOUNTANTS NV"
row7 " " "ROYAL DUTCH SHELL PLC" "GB04366849" "ERNST & YOUNG"
row8 "3" "BP PLC" "GB00102498" "CAPITA ASSET SERVICES"
这是2014年:
> advisors2014
[,1] [,2] [,3] [,4]
colnam "Mark" "Company.name" "Company.ID" "Advisor.Name"
row1 "1" "VOLKSWAGEN AG" "DE2070000543" "PRICEWATERHOUSECOOPERS"
row2 " " "VOLKSWAGEN AG" "DE2070000543" "PWC DEUTSCHE REVISION"
row3 " " "VOLKSWAGEN AG" "DE2070000543" "C&L TREUARBEIT REVISION"
row4 "2" "ROYAL DUTCH SHELL PLC" "GB04366849" "LLOYDS TSB REGISTRARS"
row5 " " "ROYAL DUTCH SHELL PLC" "GB04366849" "PRICEWATERHOUSECOOPERS"
row6 "3" "BP PLC" "GB00102498" "CAPITA ASSET SERVICES"
row7 "4" "COCACOLA" "GB111222333" " "
如您所见,每个公司可能有一个或多个顾问。当然,它们也可能随时间而变化:今年(这意味着在此数据帧中),大众汽车有3名顾问,但明年可能只有一名顾问,或者用其他一些顾问代替。
为了跟踪所有这些变化,我希望有一个数据框,用于保存每个公司/年度观察的顾问列表。
我知道我们可以使用nest
函数来完成此操作,但是据我了解,它是根据相同数据框中的列创建列表的,而多个数据帧,例如10个。
有人可以帮我解决这个问题吗?非常感谢。
答案 0 :(得分:0)
如果您要查找单个数据框,其中的列为year
,Company.name
,并且该列包含一个列表,则每个列表的元素是一个数据框,其中包含该年份和Company的行.name然后:
library(dplyr)
library(purrr)
library(tidyr)
ls(pattern = "^advisors\\d{4}$", envir = .GlobalEnv) %>%
mget(envir = .GlobalEnv) %>%
map_dfr(as.data.frame.matrix, .id = "year") %>%
mutate(year = sub("advisors", "", year) %>% as.numeric) %>%
nest(-c(year, Company.name))
给予:
# A tibble: 6 x 3
year Company.name data
<dbl> <fct> <list>
1 2015. VOLKSWAGEN AG <data.frame [3 x 3]>
2 2015. ROYAL DUTCH SHELL PLC <data.frame [4 x 3]>
3 2015. BP PLC <data.frame [1 x 3]>
4 2016. VOLKSWAGEN AG <data.frame [3 x 3]>
5 2016. ROYAL DUTCH SHELL PLC <data.frame [4 x 3]>
6 2016. BP PLC <data.frame [1 x 3]>
或者如果您只想要一个长格式的数据框,则省略nest
行。
我们假定输入为:
advisors2015 <-
structure(list(Mark = c(1L, NA, NA, 2L, NA, NA, NA, 3L),
Company.name = structure(c(3L,
3L, 3L, 2L, 2L, 2L, 2L, 1L), .Label = c("BP PLC", "ROYAL DUTCH SHELL PLC",
"VOLKSWAGEN AG"), class = "factor"), Company.ID = structure(c(1L,
1L, 1L, 3L, 3L, 3L, 3L, 2L), .Label = c("DE2070000543", "GB00102498",
"GB04366849"), class = "factor"), Advisor.Name = structure(c(6L,
8L, 1L, 5L, 7L, 4L, 3L, 2L), .Label = c("C&L TREUARBEIT REVISION",
"CAPITA ASSET SERVICES", "ERNST & YOUNG", "KPMG ACCOUNTANTS NV",
"LLOYDS TSB REGISTRARS", "PRICEWATERHOUSECOOPERS", "PRICEWATERHOUSECOOPERS LLP",
"PWC DEUTSCHE REVISION"), class = "factor")),
class = "data.frame", row.names = c(NA, -8L))
advisors2015 <- advisors2016 <- as.table(as.matrix(advisors2015))